The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a Golgi-electron microscopic study. 1985

R L Saint Marie, and A Peters

Based on a gold-toning, Golgi-electron microscope examination of 12 small and medium-sized spiny stellate neurons in laminae 4A, 4B, and 4C of the monkey visual cortex (area 17), the ultrastructure of the cell somata, dendrites, and axons of these neurons is described. Particular attention is paid to the synapses involving the surface of different parts of these neurons. Only symmetric synapses occur on the somata of spiny stellate neurons, and these occur with a frequency of 11.0-15.9 synapses/100 microns2 perikaryal surface. Symmetric synapses also occur on dendritic shafts and, occasionally, on dendritic spines. Asymmetric synapses are occasionally present along the dendritic shafts of spiny stellate neurons, but the majority of asymmetric synapses (75-95%) occur on their dendritic spines. The initial axon segments of the smallest spiny stellate neurons possess no axo-axonal synapses, but several symmetric synapses are present along the initial segment of a medium-sized, spiny stellate neuron in layer 4B. Fifty-three synapses made by boutons of the axons of these spiny stellate neurons have been identified, and all are asymmetric. Sixty per cent of the synapses are formed by boutons en passant and the remainder by the terminal swellings of spine-like axonal appendages, boutons terminaux. Of the synapses formed by the axons of spiny stellate cells, axo-spinous synapses outnumber axo-dendritic synapses two to one, and axo-dendritic synapses involve both spinous and aspinous dendrites. Evidence is presented which suggests that many of the axon terminals forming asymmetric synapses with the dendritic shafts and spines of spiny stellate neurons are derived from other spiny stellate neurons.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

R L Saint Marie, and A Peters
March 1994, The Journal of comparative neurology,
R L Saint Marie, and A Peters
January 1971, Journal fur Hirnforschung,
R L Saint Marie, and A Peters
January 1989, Anatomy and embryology,
R L Saint Marie, and A Peters
January 1989, Neuroscience,
R L Saint Marie, and A Peters
April 1991, The Journal of comparative neurology,
R L Saint Marie, and A Peters
March 1994, The Journal of comparative neurology,
R L Saint Marie, and A Peters
July 1973, The Journal of comparative neurology,
R L Saint Marie, and A Peters
May 1987, The Journal of comparative neurology,
Copied contents to your clipboard!