Specification of the acoustical input to the ear at high frequencies. 1985

S M Khanna, and M R Stinson

The sound fields that arise in the auditory canals of cats have been examined both experimentally and theoretically. Of particular interest was the spatial variation of sound pressure near the eardrum, where reference probes are typically located. Using a computer controlled data acquisition system, sound pressure was measured between 100 Hz and 33 kHz for constant driver input at 14 different locations in the ear canal of a cat, and the standing wave patterns formed. The shape of the patterns could be predicted quite well above 12 kHz using a theory that requires specification of only the geometry of the ear canal. This theory, an extension of the one-dimensional horn equation, applies to three-dimensional, rigid-walled tubes that have both variable cross section and curvature along their lengths. Large variations of sound pressure along the ear canal and over the surface of the eardrum are found above about 10 kHz. As a consequence it is not possible to define the acoustical input to the ear from sound pressure level measured at any single location. Even in comparative experiments, in which only the constancy of the acoustical input is important, any uncertainty in reference probe location would lead to an uncertainty in sound pressure level when different sets of measurements are compared. This error, calculated for various probe locations and frequencies, is especially large when the probe is near a minimum of the sound field. Spatial variations in pressure can also introduce anomalous features into the measured frequency response of other auditory quantities when eardrum sound pressure is used as a reference. This is illustrated with measurements of the round window cochlear microphonic.

UI MeSH Term Description Entries
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003055 Cochlear Microphonic Potentials The electric response of the cochlear hair cells to acoustic stimulation. Cochlear Microphonic Potential,Potential, Cochlear Microphonic,Potentials, Cochlear Microphonic
D004424 Ear Canal The narrow passage way that conducts the sound collected by the EAR AURICLE to the TYMPANIC MEMBRANE. Auditory Canal, External,External Acoustic Canal,External Acoustic Meatus,External Auditory Canal,External Ear Canal,Acoustic Canal, External,Acoustic Canals, External,Acoustic Meatus, External,Auditory Canals, External,Canal, Ear,Canal, External Ear,Canals, Ear,Canals, External Ear,Ear Canal, External,Ear Canals,Ear Canals, External,External Acoustic Canals,External Auditory Canals,External Ear Canals
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012405 Round Window, Ear Fenestra of the cochlea, an opening in the basal wall between the MIDDLE EAR and the INNER EAR, leading to the cochlea. It is closed by a secondary tympanic membrane. Cochlear Round Window,Fenestra Cochleae,Round Window of Ear,Cochlear Round Windows,Ear Round Window,Round Window, Cochlear,Round Windows, Cochlear,Round Windows, Ear
D013016 Sound A type of non-ionizing radiation in which energy is transmitted through solid, liquid, or gas as compression waves. Sound (acoustic or sonic) radiation with frequencies above the audible range is classified as ultrasonic. Sound radiation below the audible range is classified as infrasonic. Acoustic Waves,Elastic Waves,Sonic Radiation,Sound Waves,Acoustic Wave,Elastic Wave,Radiation, Sonic,Radiations, Sonic,Sonic Radiations,Sound Wave,Sounds,Wave, Acoustic,Wave, Elastic,Wave, Sound,Waves, Acoustic,Waves, Elastic,Waves, Sound
D014432 Tympanic Membrane An oval semitransparent membrane separating the external EAR CANAL from the tympanic cavity (EAR, MIDDLE). It contains three layers: the skin of the external ear canal; the core of radially and circularly arranged collagen fibers; and the MUCOSA of the middle ear. Eardrum,Eardrums,Membrane, Tympanic,Membranes, Tympanic,Tympanic Membranes

Related Publications

S M Khanna, and M R Stinson
February 1987, The Journal of the Acoustical Society of America,
S M Khanna, and M R Stinson
January 1980, Ultrasound in medicine & biology,
S M Khanna, and M R Stinson
June 1956, The American journal of physiology,
S M Khanna, and M R Stinson
January 1993, Journal of rehabilitation research and development,
S M Khanna, and M R Stinson
July 1967, The Journal of the Acoustical Society of America,
S M Khanna, and M R Stinson
December 2010, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
S M Khanna, and M R Stinson
July 1998, The Journal of the Acoustical Society of America,
S M Khanna, and M R Stinson
October 1975, Science (New York, N.Y.),
S M Khanna, and M R Stinson
September 1993, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!