Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. II. Responses to movement triggering vs. nontriggering sensory signals. 1985

K Kurata, and J Tanji

This report compares neuronal activity in the supplementary motor area (SMA) and the precentral motor cortex (PCM) in response to auditory and vibrotactile signals that required a monkey either to start a key-press movement or to refrain from initiating such a movement. Confirming previous reports (3, 9), a vibrotactile stimulus that triggered movement gave rise to two phases of neuronal activity in PCM neurons: a short-latency response time-locked to the occurrence of the vibrotactile stimulus, and a response related to the time of onset of the movement. When the animal was required to refrain from moving in response to the vibrotactile signal, the short-latency response was often attenuated and there was rarely any later activity. There was no attenuation of the short-latency response to the nontriggering vibrotactile stimulus in the anterior part of the postcentral somatosensory cortex. As reported previously (23), short-latency stimulus-locked responses of SMA neurons to a vibrotactile signals were less frequent and the magnitude of the responses was smaller than in the PCM. However, the properties of the later-occurring responses of SMA neurons were often different from those of PCM neurons. Many SMA neurons responded to both the triggering and nontriggering vibrotactile signals. Twenty-nine SMA neurons responded to the nontriggering signal only and not to the movement-triggering signal. Most of the PCM neurons were active after the auditory signal only when the signal was a trigger to start the key-press movement; three neurons exhibited a slight activity increase after the nontriggering auditory signal. In contrast, a number of SMA neurons responded to the nontriggering auditory signal as well as the movement-triggering auditory signal. Twenty-three neurons responded exclusively to the nontriggering auditory signal. These results indicate the extent to which SMA neuronal activity, in contrast to that of the PCM, is related to factors other than the execution of movement.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001288 Attention Focusing on certain aspects of current experience to the exclusion of others. It is the act of heeding or taking notice or concentrating. Focus of Attention,Selective Attention,Social Attention,Attention Focus,Attention, Selective,Attention, Social,Selective Attentions
D013016 Sound A type of non-ionizing radiation in which energy is transmitted through solid, liquid, or gas as compression waves. Sound (acoustic or sonic) radiation with frequencies above the audible range is classified as ultrasonic. Sound radiation below the audible range is classified as infrasonic. Acoustic Waves,Elastic Waves,Sonic Radiation,Sound Waves,Acoustic Wave,Elastic Wave,Radiation, Sonic,Radiations, Sonic,Sonic Radiations,Sound Wave,Sounds,Wave, Acoustic,Wave, Elastic,Wave, Sound,Waves, Acoustic,Waves, Elastic,Waves, Sound
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses

Related Publications

K Kurata, and J Tanji
January 1985, Behavioural brain research,
K Kurata, and J Tanji
December 1986, Journal of neurophysiology,
K Kurata, and J Tanji
March 1996, Brain research. Cognitive brain research,
K Kurata, and J Tanji
January 1996, European neurology,
K Kurata, and J Tanji
February 1992, Electroencephalography and clinical neurophysiology,
K Kurata, and J Tanji
December 1979, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Copied contents to your clipboard!