Reconstitution of functional mRNA-protein complexes in a rabbit reticulocyte cell-free translation system. 1985

J R Greenberg, and E Carroll

A variety of evidence suggests that the cytoplasmic mRNA-associated proteins of eucaryotic cells are derived from the cytoplasm and function there, most likely in protein synthesis or some related process. Furthermore, the evidence suggests that protein-free mRNA added to a cell-free translation system should become associated with a set of proteins similar to those associated with mRNA in native polyribosomes. To test this hypothesis, we added deproteinized rabbit reticulocyte mRNA to a homologous cell-free translation system made dependent on exogenous mRNA by treatment with micrococcal nuclease. The resulting reconstituted complexes were irradiated with UV light to cross-link the proteins to mRNA, and the proteins were analyzed by gel electrophoresis. The proteins associated with polyribosomal mRNA in the reconstituted complexes were indistinguishable from those associated with polyribosomal mRNA in intact reticulocytes. Furthermore, reticulocyte mRNA-associated proteins were very similar to those of cultured mammalian cells. The composition of the complexes varied with the translational state of the mRNA; that is, certain proteins present in polyribosomal mRNA-protein complexes were absent or reduced in amount in 40S to 80S complexes and in complexes formed in the absence of translation. However, other proteins, including a 78-kilodalton protein associated with polyadenylate, were present irrespective of translational state, or else they were preferentially associated with untranslated mRNA. These findings are in agreement with previous data suggesting that proteins associated with cytoplasmic mRNA are derived from the cytoplasm and that they function in translation or some other cytoplasmic process, rather than transcription, RNA processing, or transport from the nucleus to the cytoplasm.

UI MeSH Term Description Entries
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

J R Greenberg, and E Carroll
February 1977, Canadian journal of biochemistry,
J R Greenberg, and E Carroll
January 1979, Physiological chemistry and physics,
J R Greenberg, and E Carroll
January 1998, Methods in molecular biology (Clifton, N.J.),
J R Greenberg, and E Carroll
January 1985, Methods in molecular biology (Clifton, N.J.),
J R Greenberg, and E Carroll
January 1996, Methods in molecular biology (Clifton, N.J.),
J R Greenberg, and E Carroll
November 1970, The Journal of biological chemistry,
J R Greenberg, and E Carroll
September 1977, Biochemical and biophysical research communications,
J R Greenberg, and E Carroll
May 2001, Biochemical and biophysical research communications,
Copied contents to your clipboard!