Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons. 1985

G Raisman

The neurosensory cells of the primary olfactory and vomeronasal projections are in a state of continuous replacement throughout adult life. Since their axons form synaptic terminals with neurons in the olfactory and accessory olfactory bulbs, this system is an apparent exception to the rule that peripheral axons cannot grow into the central nervous system of adult mammals. Electron microscopy of sections (especially in a plane tangential to the surface of the accessory olfactory bulb) shows a unique glial arrangement. By virtue of their greater electron density and "secretory-type" organelle content (Golgi apparatus and dense-core vesicles) the glial cells of the superficial layers of the accessory olfactory bulb are distinguished both from the glia of the vomeronasal nerves and from the astrocytes of the deeper bulbar layers. The synapses between the vomeronasal axons and the postsynaptic elements are formed in glomeruli which are encapsulated by an inner layer of glial cytoplasm derived from the superficial glia, and an outer layer derived from the astrocytes. The principle of the organization is that the superficial glial processes are reflected off the axons before they reach the synaptic terminal zone. Conversely, for the postsynaptic elements, the astrocytic processes are reflected off the dendrites of the accessory olfactory bulb neurons before they enter the core of the glomeruli. In effect, the synapses are formed in a "no-man's-land" between the two glial cell types. This peculiar glial arrangement may be important for the unique regenerative capacity of this system.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009296 Nasal Cavity The proximal portion of the respiratory passages on either side of the NASAL SEPTUM. Nasal cavities, extending from the nares to the NASOPHARYNX, are lined with ciliated NASAL MUCOSA. Nasal Cavities,Cavities, Nasal,Cavity, Nasal
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003391 Cranial Nerves Twelve pairs of nerves that carry general afferent, visceral afferent, special afferent, somatic efferent, and autonomic efferent fibers. Cranial Nerve,Nerve, Cranial,Nerves, Cranial
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012679 Sense Organs Specialized organs adapted for the reception of stimuli by the NERVOUS SYSTEM. Sensory System,Organ, Sense,Sense Organ,Sensory Systems,System, Sensory

Related Publications

G Raisman
January 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Raisman
September 2000, Science (New York, N.Y.),
G Raisman
January 1996, Zhonghua wai ke za zhi [Chinese journal of surgery],
G Raisman
September 2005, Journal of molecular histology,
G Raisman
January 2006, Trends in neurosciences,
Copied contents to your clipboard!