The development of innervation patterns in the avian cochlea. 1985

M C Whitehead, and D K Morest

The sequence of developmental events leading to the innervation of the cochlea and the differentiation of its receptor cells has been studied in chick embryos with Golgi methods. We describe the morphogenesis of cochlear ganglion cell peripheral processes from their appearance in early embryos to the formation of their mature endings on hair cells in the basilar papilla (organ of Corti) of prehatching chicks. In the stage of peripheral fiber outgrowth, embryonic days 3-5, the fibers emerge from the ganglion cell bodies and grow, in a uniform fashion, toward the undifferentiated receptor epithelium of the otocyst. In the stage of the invasion of the otocyst by the peripheral fibers, embryonic days 6-7, some fibers enter the epithelium directly after reaching it, others enter after traveling some distance longitudinally beneath its basal lamina. The invading fibers appear to encounter resistance at the basal lamina, but, once within the epithelium, at embryonic days 8-9, they form a surfeit of branches in columnar zones oriented radially toward the surface. In early synaptogenesis (embryonic days 8-9) hair cells first become apparent. They differentiate from primitive epithelial cells. These cells withdraw their basal processes, which appear to accompany the growing fibers into the superficial epithelium. At embryonic days 11-13, the stage of mid-synaptogenesis, the fibers develop large, bulbous, preterminal and terminal swellings, which are located below the bases of the hair cells; the surplus branches atrophy or withdraw. Efferent axons are first seen in the epithelium at this time. In late synaptogenesis (embryonic days 14-17), the preterminal swellings disappear and the endings transform into mature foot-shapes at the bases of the hair cells. These morphological changes during the development of the peripheral endings are comparable to those of cochlear axons in nucleus magnocellularis (cochlear nucleus). During mid-synaptogenesis, when the ganglion cells develop swellings in the periphery, their central axons ramify extensively. Late in synaptogenesis, while the peripheral swellings disappear, there is a corresponding condensation of the central terminals to form the end-bulbs of Held. Thus, specific connections of the cochlear ganglion cells and their target cells in the ear and brain may result from two sequential developmental phases: (1) loosely organized and overabundant initial growth of branches from the fibers entering their target tissue; (2) reorganization of these fibers with the disappearance or resorption of the surplus branches during the transformation of their endings into mature synaptic arrangements.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

M C Whitehead, and D K Morest
April 1983, Hearing research,
M C Whitehead, and D K Morest
August 1998, Current opinion in neurobiology,
M C Whitehead, and D K Morest
January 1987, Hearing research,
M C Whitehead, and D K Morest
June 1989, Brain research. Developmental brain research,
M C Whitehead, and D K Morest
January 1981, The Annals of otology, rhinology, and laryngology,
M C Whitehead, and D K Morest
January 1972, Acta oto-laryngologica,
M C Whitehead, and D K Morest
March 1966, The Annals of otology, rhinology, and laryngology,
M C Whitehead, and D K Morest
March 1967, The Annals of otology, rhinology, and laryngology,
M C Whitehead, and D K Morest
January 1974, Acta oto-laryngologica,
M C Whitehead, and D K Morest
November 1991, Journal of neurocytology,
Copied contents to your clipboard!