Alterations in hepatic microsomal drug metabolism and cytochrome P-450 proteins in spontaneously hypertensive rats. 1985

B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell

Experiments were conducted to determine if substrate-specific changes in microsomal metabolism and liver proteins occurred in young (12-13 weeks) spontaneously hypertensive rats (SHR) fed ad libitum compared to age-matched normotensive Wistar Kyoto (WKY) control rats. The hepatic microsomal protein content in SHR rats was significantly increased compared to WKY rats while cytosolic and total liver protein levels did not differ between the two groups. Liver microsomal ethylmorphine-N-demethylase activity was substantially enhanced in SHR rats with only slight increases in cytochrome P-450 content and aniline hydroxylase activity compared to WKY rats. The substrate-specific increases in the microsomal drug metabolism in SHR rats were accompanied by an increase in the prominence of a protein with molecular weight 55,000 in the cytochrome P-450 region. These preliminary observations may be clinically relevant in that alterations in hepatic drug metabolism may be associated with endogenous biochemical processes underlying the hypertensive state.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005037 Ethylmorphine-N-Demethylase A drug-metabolizing enzyme of the hepatic microsomal oxidase system which catalyzes the oxidation of the N-methyl group of ethylmorphine with the formation of formaldehyde. Ethylmorphine N Demethylase,Demethylase, Ethylmorphine N,N Demethylase, Ethylmorphine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
February 1980, Research communications in chemical pathology and pharmacology,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
February 1988, Biochemical pharmacology,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
March 1981, Biochemical pharmacology,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
March 1980, Biochemical pharmacology,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
October 1980, Biochemical pharmacology,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
August 1984, Biochemical and biophysical research communications,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
March 1984, Biochemical pharmacology,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
January 1992, The American journal of physiology,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
May 1977, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
B A Merrick, and M H Davies, and D E Cook, and T L Holcslaw, and R C Schnell
August 1977, Biochemical and biophysical research communications,
Copied contents to your clipboard!