Dose fractionation effects in plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts. 1985

E M Zeman, and J S Bedford

A comparison of gamma-ray dose fractionation effects was made using plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts in an attempt to simulate basically similar populations of cells that differ primarily in their turnover rates. The status of cell populations with respect to their turnover rates may be an important factor influencing dose fractionation effects in early- and late-responding tissues. In this cell culture system, the rate of cell turnover was approximately three times higher for the plateau-phase transformed cultures. While the single acute dose survival curves for log-phase cells were indistinguishable, there were significant differences between the survival curves for plateau-phase cultures of the two cell types. These differences were qualitatively similar to the differences recently postulated for the survival of target cells governing early and late tissue responses. Both cell lines had a similar capacity for repair of sublethal damage, but untransformed cells had a much greater capacity to repair potentially lethal damage in plateau phase. Further, untransformed plateau-phase cultures were much more sensitive to a radiation-induced G1 (or G0 to G1) delay than transformed cultures. Multifraction survival curves were determined for both cell lines for doses per fraction ranging from 9.0 to 0.8 Gy, and from these isoeffect curves of log total dose versus dose per fraction were derived. The isoeffect curve for the slowly cycling, untransformed cells was found to be appreciably steeper than that for the more rapidly cycling transformed cells, a finding consistent with previously reported differences in dose fractionation isoeffect curves for early- and late-responding tissues in vivo.

UI MeSH Term Description Entries
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002588 Cesium Radioisotopes Unstable isotopes of cesium that decay or disintegrate emitting radiation. Cs atoms with atomic weights of 123, 125-132, and 134-145 are radioactive cesium isotopes. Radioisotopes, Cesium
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E M Zeman, and J S Bedford
September 1990, Journal of radiation research,
E M Zeman, and J S Bedford
November 1992, International journal of radiation biology,
E M Zeman, and J S Bedford
April 1996, International journal of oncology,
E M Zeman, and J S Bedford
July 1976, Cancer research,
E M Zeman, and J S Bedford
May 1998, Radiation research,
Copied contents to your clipboard!