Central role for angiotensin in control of adrenal catecholamine secretion. 1985

E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison

Angiotensin II (ANG II) is required for unimpaired adrenal reflex secretion of catecholamines after hemorrhage in the dog. To test if ANG II acts centrally, experiments were performed under general anesthesia on bilaterally or sham-nephrectomized dogs hemorrhaged at 25 ml/kg. Ventriculocisternal perfusion of ANG II or its antagonist saralasin was accomplished via needles inserted in the left lateral cerebral ventricle and cisterna magna. Mean arterial pressure and adrenal secretion of catecholamines were measured before and after hemorrhage. Nephrectomized dogs receiving only artificial cerebrospinal fluid (CSF) by ventriculocisternal perfusion had a very small adrenal response to hemorrhage compared with animals receiving ANG II intraventricularly (IVT) (at 10 and 100 pg . kg-1 . min-1). This effect of ANG II IVT also depended on the rate of IVT infusion. Peripheral infusion of ANG II (10 pg . kg-1 . min-1) had no effect on adrenal catecholamine secretion. Animals with intact kidneys given saralasin IVT (0.06 ng/min) responded similarly to nephrectomized dogs receiving only CSF IVT. Intravenous saralasin did not blunt the response to hemorrhage. Thus ANG II appears to support catecholamine secretion via a central mechanism. This mechanism is physiologically significant because either nephrectomy or functional elimination of ANG II by saralasin greatly attenuates the adrenal medullary response to hemorrhage in vivo.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009392 Nephrectomy Excision of kidney. Heminephrectomy,Heminephrectomies,Nephrectomies
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D006470 Hemorrhage Bleeding or escape of blood from a vessel. Bleeding,Hemorrhages

Related Publications

E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
October 1993, Journal of anatomy,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
November 1999, Canadian journal of physiology and pharmacology,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
July 1977, European journal of pharmacology,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
May 1999, Canadian journal of physiology and pharmacology,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
January 1998, Advances in pharmacology (San Diego, Calif.),
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
December 1978, European journal of pharmacology,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
June 1980, British journal of pharmacology,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
April 1998, The American journal of physiology,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
October 1998, The American journal of physiology,
E J Corwin, and J F Seaton, and M Hamaji, and T S Harrison
January 1992, European journal of pharmacology,
Copied contents to your clipboard!