Interaction of the 43K protein with components of Torpedo postsynaptic membranes. 1985

S Porter, and S C Froehner

Interactions of the major Mr 43 000 peripheral membrane protein (43K protein) with components of Torpedo postsynaptic membranes have been examined. Treatment of membranes with copper o-phenanthroline promotes the polymerization of 43K protein to dimers and higher oligomers. These high molecular weight forms of 43K protein can be converted to monomers by reduction with dithiothreitol and do not contain any of the other major proteins found in these membranes, including the subunits of the acetylcholine receptor, as shown by immunoblotting with monoclonal antibodies. To study directly its interactions with the membrane, the 43K protein was radioiodinated and purified by immunoaffinity chromatography. Purified 43K protein binds tightly to pure liposomes of various compositions in a manner that is not inhibited by KCl concentrations up to 0.75 M. The binding can be reversed by adjusting the pH of the reaction to 11, the same treatment that removes 43K protein from postsynaptic membranes. Unlabeled 43K protein solubilized from Torpedo membranes with cholate can be reconstituted with exogenously added lipids in the absence of the receptor. The results suggest that 43K protein molecules are amphipathic and that they may interact with each other and with the lipid bilayer. These interactions cannot explain the coextensive distribution of 43K proteins with acetylcholine receptors in situ. However, they could account for the association of the 43K protein with the postsynaptic membrane and may contribute to the maintenance of the structure of the cytoplasmic specialization of which this protein is a major component.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D014101 Torpedo A genus of the Torpedinidae family consisting of several species. Members of this family have powerful electric organs and are commonly called electric rays. Electric Rays,Torpedinidae,Rays, Electric

Related Publications

S Porter, and S C Froehner
January 1980, Biochemical and biophysical research communications,
S Porter, and S C Froehner
October 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Porter, and S C Froehner
August 1981, Proceedings of the National Academy of Sciences of the United States of America,
S Porter, and S C Froehner
January 1974, Advances in cytopharmacology,
S Porter, and S C Froehner
September 1984, British journal of pharmacology,
S Porter, and S C Froehner
December 1982, Biochimica et biophysica acta,
Copied contents to your clipboard!