Colchicine-induced differential sprouting of the endplates on fast and slow muscle fibers in rat extensor digitorum longus, soleus and tibialis anterior muscles. 1985

D A Riley, and C S Fahlman

The patterns of sprouting of motor endplates were examined in fast extensor digitorum longus and slow soleus muscles and in tibialis anterior muscles containing fast and slow muscle fiber types. A histochemical technique combining nerve silver impregnation and endplate cholinesterase staining was developed for this task. Temporal examination of the innervation was conducted 3, 7 and 10 days after either a 45 or 90 min application of the ipsilateral sciatic nerve with 5 mM colchicine. This dosage of drug did not cause detectable axon or muscle fiber degeneration, unlike 60 mM which was highly neurotoxic. At 3 days following treatment with the lower concentration, there were no significant differences in the percentages of intranodal, preterminal and ultraterminal sprouts between the normal (non-treated), sham-treated, contralateral systemic-control and drug-treated groups of muscles. By 7 and 10 days, the muscles on the drug-treated side exhibited significant increases in the 3 types of sprouts. Collateral sprouting was uncommon: most outgrowths remained on the muscle fibers innervated by the parent axons. Endplates in the tibialis anterior muscles of the control and drug-treated groups were classified Complex, Intermediate or Simple according to the relative degrees of branching of the terminal arbors. The occurrence of endplate classes and muscle fiber types was correlated in the superficial and deep regions of this muscle. Complex endplates innervated fast glycolytic fibers, Intermediate endplates supplied fast oxidative glycolytic fibers, and Simple endplates served slow oxidative fibers. In response to colchicine, the endplates of the slow muscles sprouted more than those of fast muscles while the innervation of slow fiber types sprouted less than that of fast fiber types. Furthermore, intranodal sprouts were more prevalent in slow muscles and ultraterminal sprouts more numerous in fast muscles whereas intranodal sprouts predominated on fast fiber types and ultraterminal sprouts were characteristic of slow fiber types. These apparently contradictory results were reconciled when it was noted that soleus endplates were mostly Complex and Intermediate, and the extensor digitorum longus contained more Simple endplates. Thus, consistency of sprouting patterns among endplate types of the 3 muscles was recognized when the pre-existing branching patterns were considered. This indicated that the patterns of sprouting were determined by the motor neurons rather than the muscle fibers. The observed sprouting responses supported the hypothesis that colchicine treatment of motor axons caused muscle fibers to elaborate a diffusible sprout-inducing factor.

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D A Riley, and C S Fahlman
January 1987, Muscle & nerve,
D A Riley, and C S Fahlman
April 1995, Journal of anatomy,
D A Riley, and C S Fahlman
March 1992, Microvascular research,
D A Riley, and C S Fahlman
October 1999, Archives of histology and cytology,
D A Riley, and C S Fahlman
June 1980, The Australian journal of experimental biology and medical science,
D A Riley, and C S Fahlman
December 1980, Developmental biology,
Copied contents to your clipboard!