Metabolic activation of the terminal N-methyl group of N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide hydrochloride (procarbazine). 1985

S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough

The NADPH-dependent microsomal metabolism of [14C]procarbazine, labeled on the terminal N-methyl group, resulted in the covalent binding of the drug to exogenously added DNA; this reaction was inhibited by metyrapone. Procarbazine metabolism was also shown to result in covalent binding of the methyl group of the drug to microsomal protein upon metabolism, but the extent of protein binding was at least an order of magnitude smaller than that seen with its primary oxidative metabolite. N-isopropyl-alpha-(2-methylazo)-p-toluamide. The characteristics of the reactions leading to the covalent binding of the N-methyl group of the azo derivative to microsomal protein and its metabolism to form the hydrocarbon, methane, possessed a number of similarities in the apparent kinetic parameters (Km and Vmax), induction, and inhibition patterns indicating a common pathway of metabolism to form a reactive intermediate and the involvement of cytochrome P-450. Reduced glutathione stimulated methane formation and inhibited covalent binding to protein. One azoxy derivative, N-isopropyl-alpha-(2-methyl-ONN-azoxy)-p-toluamide, was chemically unstable and its decomposition was shown to lead to covalent binding to microsomal protein. A diazene intermediate and a methyl radical are proposed to be intermediates in the formation of methane during the oxidative metabolism of the azo derivative of procarbazine and a common intermediate in the activation of procarbazine may result in both covalent binding to cellular macromolecules and methane production. In addition, chemical decomposition of the azoxy metabolites may also contribute to a small portion of the covalent binding, but not to methane formation.

UI MeSH Term Description Entries
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011344 Procarbazine An antineoplastic agent used primarily in combination with mechlorethamine, vincristine, and prednisone (the MOPP protocol) in the treatment of Hodgkin's disease. Matulane,Natulan,Procarbazine Hydrochloride,Procarbazine Monohydrobromide,Procarbazine Monohydrochloride,Hydrochloride, Procarbazine,Monohydrobromide, Procarbazine,Monohydrochloride, Procarbazine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
January 1981, Advances in experimental medicine and biology,
S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
February 1969, Teratology,
S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
November 1979, Cancer research,
S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
February 1979, Experimental and molecular pathology,
S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
February 1965, Cancer chemotherapy reports,
S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
July 1964, Cancer chemotherapy reports,
S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
July 1967, Cancer research,
S J Moloney, and P Wiebkin, and S W Cummings, and R A Prough
November 1964, Cancer chemotherapy reports,
Copied contents to your clipboard!