Chromosome banding in Amphibia. IX. The polyploid karyotypes of Odontophrynus americanus and Ceratophrys ornata (Anura, Leptodactylidae). 1985

M Schmid, and T Haaf, and W Schempp

The somatic and meiotic chromosomes of the South American leptodactylid toads Odontophrynus americanus, Ceratophyrys ornata, and C. cranwelli were analysed both with conventional staining and differential banding techniques. The karyotypes of O. americanus were tetraploid; those of C. ornata octaploid. Ceratophrys cranwelli is a diploid species whose karyotype displays great similarities with that of C. ornata. The high frequency of multivalent pairing configurations in the meioses of O. americanus and C. ornata indicate that these animals were of autopolyploid origin. The conventionally stained somatic chromosomes of O. americanus can be arranged into sets of four similar chromosomes (quartets); those of C. ornata, into sets of eight similar chromosomes (octets). The banding patterns revealed heterogeneity within some quartets of O. americanus, dividing each of them into two pairs of homologous chromosomes. In analogy, some octets of C. ornata can be subdivided into two quartets of chromosomes with homologous bands. These structural heterogeneities within the quartets and octets are interpreted as a "diploidization" of the polyploid karyotypes. Diploidization leads to genomes that are polyploid with respect to the amount of genetic material and diploid with respect to chromosomal characteristics and the level of gene expression. In tetraploid O. americanus, the number of nucleolus organizer regions (NORs) and their DNA content is proportional to the degree of ploidy. In contrast, up to eight NORs have been deleted in the octoploid C. ornata. These NOR losses are discussed as a possible reason for the reduction of genetic activity in polyploid genomes.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D011123 Polyploidy The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc. Polyploid,Polyploid Cell,Cell, Polyploid,Cells, Polyploid,Polyploid Cells,Polyploidies,Polyploids
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D005260 Female Females
D006570 Heterochromatin The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE. Heterochromatins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Schmid, and T Haaf, and W Schempp
January 1959, Anales de la Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay,
M Schmid, and T Haaf, and W Schempp
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
M Schmid, and T Haaf, and W Schempp
August 1998, Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al,
M Schmid, and T Haaf, and W Schempp
September 1968, Experientia,
M Schmid, and T Haaf, and W Schempp
January 1975, Memorias do Instituto Butantan,
Copied contents to your clipboard!