The somatic and meiotic chromosomes of the South American leptodactylid toads Odontophrynus americanus, Ceratophyrys ornata, and C. cranwelli were analysed both with conventional staining and differential banding techniques. The karyotypes of O. americanus were tetraploid; those of C. ornata octaploid. Ceratophrys cranwelli is a diploid species whose karyotype displays great similarities with that of C. ornata. The high frequency of multivalent pairing configurations in the meioses of O. americanus and C. ornata indicate that these animals were of autopolyploid origin. The conventionally stained somatic chromosomes of O. americanus can be arranged into sets of four similar chromosomes (quartets); those of C. ornata, into sets of eight similar chromosomes (octets). The banding patterns revealed heterogeneity within some quartets of O. americanus, dividing each of them into two pairs of homologous chromosomes. In analogy, some octets of C. ornata can be subdivided into two quartets of chromosomes with homologous bands. These structural heterogeneities within the quartets and octets are interpreted as a "diploidization" of the polyploid karyotypes. Diploidization leads to genomes that are polyploid with respect to the amount of genetic material and diploid with respect to chromosomal characteristics and the level of gene expression. In tetraploid O. americanus, the number of nucleolus organizer regions (NORs) and their DNA content is proportional to the degree of ploidy. In contrast, up to eight NORs have been deleted in the octoploid C. ornata. These NOR losses are discussed as a possible reason for the reduction of genetic activity in polyploid genomes.