An intracellular HRP-study of cat tensor tympani motoneurons. 1985

E Friauf, and R Baker

The morphology of single tensor tympani motoneurons was investigated following antidromic identification and intracellular injection of horseradish peroxidase. Eight motoneurons were selected for complete reconstruction and quantitative analysis. The mean size of tensor tympani somata (26.3 +/- 1.8 micron) make this parvocellular cluster of motoneurons below the trigeminal motor nucleus a population of the smallest cranial motoneurons yet described. Axons emerged from either the soma or a primary dendrite. They coursed dorsolaterally frequently through the trigeminal motor nucleus before looping ventrolaterally into the Vth nerve. No collaterals were observed within the brainstem. The 5 primary dendrites of each cell branched heavily and, on average, exhibited 40 terminal branches with an average tree expansion of 1262.5 micron. The dendritic arborization extended far beyond the nuclear boundaries described by the distribution of cell bodies. These data suggest that the overall membrane area for synaptic innervation is large and thus it provides morphological evidence for the hypothesis that tensor tympani motoneurons receive divergent multisensory synaptic input. The latter assumption was supported by morphological and electrophysiological evidence including close the proximity of motoneuronal dendrites to auditory (superior olivary complex) and somatosensory (trigeminal) relay centers. Since no dendrite ever entered the trigeminal motor nucleus proper the tensor motoneuron pool is distinct from the trigeminal not only in terms of soma size, location and function, but also the disposition and expansion of the postsynaptic receptive field. Based on these criteria the tensor tympani motoneuron pool should no longer be regarded as an accessory trigeminal nucleus but be recognized in its own right as the tensor tympani motor nucleus of V.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009626 Terminology as Topic Works about the terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area. Etymology,Nomenclature as Topic,Etymologies
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013719 Tensor Tympani A short muscle that arises from the pharyngotympanic tube (EUSTACHIAN TUBE) and inserts into the handle of the MALLEUS. This muscle pulls the handle medially thus controlling the tension and movement of TYMPANIC MEMBRANE. Tensor Tympanus,Tympani, Tensor,Tympanus, Tensor
D014278 Trigeminal Nuclei Nuclei of the trigeminal nerve situated in the brain stem. They include the nucleus of the spinal trigeminal tract (TRIGEMINAL NUCLEUS, SPINAL), the principal sensory nucleus, the mesencephalic nucleus, and the motor nucleus. Trigeminal Nuclear Complex,Nuclear Complex, Trigeminal,Nuclear Complices, Trigeminal,Nuclei, Trigeminal,Nucleus, Trigeminal,Trigeminal Nuclear Complices,Trigeminal Nucleus
D014432 Tympanic Membrane An oval semitransparent membrane separating the external EAR CANAL from the tympanic cavity (EAR, MIDDLE). It contains three layers: the skin of the external ear canal; the core of radially and circularly arranged collagen fibers; and the MUCOSA of the middle ear. Eardrum,Eardrums,Membrane, Tympanic,Membranes, Tympanic,Tympanic Membranes

Related Publications

E Friauf, and R Baker
May 1983, The Journal of comparative neurology,
E Friauf, and R Baker
July 1979, Neuroscience letters,
E Friauf, and R Baker
March 1998, Brain research,
E Friauf, and R Baker
December 1981, Hiroshima Daigaku shigaku zasshi. The Journal of Hiroshima University Dental Society,
Copied contents to your clipboard!