The effects of osmotic stress on human platelets. 1985

W J Armitage, and N Parmar, and C J Hunt

The effect of osmotic stress on human platelets was investigated at 0, 25, and 37 degrees C. The osmolality of the suspending plasma was decreased by adding water or increased by adding sodium chloride or sucrose. After 5 min, isotonicity was restored by dilution with an excess of isotonic phosphate-buffered saline. After centrifugation, the platelets were resuspended in autologous plasma and then incubated for 1 hr at 37 degrees C before assaying the active transport of 5-hydroxytryptamine (5-HT) and the hypotonic stress response. Anisosmotic conditions had a greater effect on the extent of volume reversal in the hypotonic stress test than on 5-HT uptake. At 25 degrees C, only moderate degrees of hypotonicity (0.25 osmol/kg) or hypertonicity (0.59 osmol/kg) were sufficient to depress the hypotonic stress response. In general, platelets tolerated departures from isotonic conditions better at 0 degree C than at the higher temperatures. Furthermore, at 0 and 25 degrees C approximately equiosmolal concentrations of sucrose and sodium chloride depressed the hypotonic stress response to similar extents, but at 37 degrees C high osmolalities (greater than 2 osmol/kg) were tolerated better when the additive was sucrose than when it was sodium chloride. Platelets shrank when subjected to hyperosmotic conditions, but their discoid shape and the peripheral band of microtubules were maintained.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

W J Armitage, and N Parmar, and C J Hunt
May 1983, Experimental hematology,
W J Armitage, and N Parmar, and C J Hunt
April 1986, Cryobiology,
W J Armitage, and N Parmar, and C J Hunt
January 1961, Acta haematologica,
W J Armitage, and N Parmar, and C J Hunt
October 1956, Blood,
W J Armitage, and N Parmar, and C J Hunt
June 1975, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
W J Armitage, and N Parmar, and C J Hunt
January 2016, PloS one,
W J Armitage, and N Parmar, and C J Hunt
October 1988, Cryobiology,
W J Armitage, and N Parmar, and C J Hunt
January 1986, Investigational new drugs,
W J Armitage, and N Parmar, and C J Hunt
February 1969, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
Copied contents to your clipboard!