Inhibition of collagen deposition in the extracellular matrix prevents the establishment of a stroma supportive of hematopoiesis in long-term murine bone marrow cultures. 1985

K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo

Long-term production of murine hematopoietic cells in vitro is dependent on establishment of a complex microenvironment consisting of a variety of stromal cells and an extensive extracellular matrix which includes collagen, fibronectin, laminin, proteoglycans, and other undefined components adherent to the culture dishes. Cis-4-hydroxyproline (CHP), a relatively specific inhibitor of collagen secretion, was used to examine the role of extracellular collagen deposition in supporting hematopoiesis in long-term C57B1/6J mouse bone marrow cell cultures. Throughout the 10-wk culture period, all culture dishes contained either 0, 10, 25, or 50 micrograms/ml of CHP. All medium and nonadherent cells were removed at weekly intervals and replaced with fresh medium containing the previous concentrations of CHP. Nonadherent cells were assayed weekly for total cells and pluripotent, erythroid, megakaryocytic, and granulocytic-macrophage progenitor cells. Dishes were killed at selected intervals to assess protein and collagen synthesis in the adherent layer. Adherent cell numbers, as judged by microscopic examination and DNA assays, correlated inversely with CHP concentrations used and paralleled degree of collagen synthesis inhibition. The decreased hemopoietic progenitor cell production correlated closely with percent inhibition of collagen synthesis and stromal cellularity. The CHP concentrations tested were not directly toxic to hemopoietic progenitor cells. These studies demonstrate that collagen deposition in the extracellular matrix of murine bone marrow cell cultures is essential to the establishment of a functional stromal microenvironment that is supportive of long-term hematopoiesis.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006909 Hydroxyproline A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation. Oxyproline,4-Hydroxyproline,cis-4-Hydroxyproline,4 Hydroxyproline,cis 4 Hydroxyproline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
September 1988, Gematologiia i transfuziologiia,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
March 1983, Blood,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
January 1984, Kroc Foundation series,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
December 2015, Biomaterials,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
January 2001, Patologicheskaia fiziologiia i eksperimental'naia terapiia,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
May 1991, Annals of hematology,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
September 1995, Experimental hematology,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
January 1995, Experimental hematology,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
June 1993, Experimental hematology,
K S Zuckerman, and R K Rhodes, and D D Goodrum, and V R Patel, and B Sparks, and J Wells, and M S Wicha, and L A Mayo
November 1995, The Journal of pathology,
Copied contents to your clipboard!