Identification of glycoproteins associated with elastin-associated microfibrils. 1985

J C Fanning, and E G Cleary

The microfibrils associated with elastic tissue have been shown to be predominantly proteinaceous. On the basis of their affinity for cationic stains, including ruthenium red, they have been assumed to be glycoprotein, but more evidence to support this claim has not been adduced. Despite repeated investigation of glycoprotein materials obtained by extraction of elastic tissues with reagents that appear to remove microfibrils, the chemical composition of elastin-associated microfibrils remains obscure. An electron microscopic study of the microfibrils in two elastin-rich tissues (bovine nuchal ligament and aorta) during their development was pursued using more specific histochemical methods. The periodic acid-alkaline bismuth stain (analogous to the periodic acid-Schiff stain for glycoproteins in light microscopy) has been adapted for this study. Specific aldehyde groups (confirmed by blocking with m-aminophenol or sodium borohydride) were identified after periodate oxidation as fine granules of bismuth stain. These were shown to localize specifically along the elastin-associated microfibrils in a finely punctate form. Staining of the amorphous elastic component did not occur except for a fine rim adjacent to the microfibrils. Lectin binding with concanavalin A (with ferritin markers) confirmed that there are glucose- or mannose-containing proteins associated with the microfibrillar component of elastic tissue. This was true of these microfibrils in all layers of the aortic wall and throughout the ligament. It was also true of mature adult tissues in which there was a lesser proportion of microfibrils. It is concluded that elastin-associated microfibrils really are associated with glycoprotein(s).

UI MeSH Term Description Entries
D008022 Ligaments Shiny, flexible bands of fibrous tissue connecting together articular extremities of bones. They are pliant, tough, and inextensile. Interosseal Ligament,Interosseous Ligament,Interosseal Ligaments,Interosseous Ligaments,Ligament,Ligament, Interosseal,Ligament, Interosseous
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile
D004547 Elastic Tissue Connective tissue comprised chiefly of elastic fibers. Elastic fibers have two components: ELASTIN and MICROFIBRILS. Elastic Fibers,Elastic Fiber,Elastic Tissues,Fiber, Elastic,Fibers, Elastic,Tissue, Elastic,Tissues, Elastic
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000072260 RNA Splicing Factors RNA-binding proteins that facilitate or inhibit RNA SPLICING. Splicing Factor,Splicing Factors,Factor, Splicing,Factors, RNA Splicing,Factors, Splicing,Splicing Factors, RNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J C Fanning, and E G Cleary
March 1978, The Biochemical journal,
J C Fanning, and E G Cleary
January 1983, International review of connective tissue research,
J C Fanning, and E G Cleary
January 1986, Journal of ultrastructure and molecular structure research,
J C Fanning, and E G Cleary
January 1998, Connective tissue research,
J C Fanning, and E G Cleary
October 1991, The Journal of investigative dermatology,
J C Fanning, and E G Cleary
February 1990, Experimental and molecular pathology,
J C Fanning, and E G Cleary
January 2005, Tissue engineering,
Copied contents to your clipboard!