Postheparin plasma lipoprotein lipase activity in heterozygotes of familial lipoprotein lipase deficiency. 1985

Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada

Serum lipoprotein pattern, apoproteins and two postheparin triglyceride lipases were analyzed in a patient with familial lipoprotein lipase (LPL) deficiency and her family. Serum of the patient showed extreme hyperchylomicronemia and her postheparin plasma LPL activity was distinctly decreased. None of heterozygotes had any type of hyperlipoproteinemia. The mother and brother of the patient had moderately decreased LPL activity. There were no consistent changes in hepatic triglyceride lipase (H-TGL) activity among heterozygotes. These results suggest that assay of LPL may be helpful for detection of heterozygotes in familial LPL deficiency.

UI MeSH Term Description Entries
D006951 Hyperlipoproteinemias Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation. Hyperlipoproteinemia
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008072 Hyperlipoproteinemia Type I An inherited condition due to a deficiency of either LIPOPROTEIN LIPASE or APOLIPOPROTEIN C-II (a lipase-activating protein). The lack of lipase activities results in inability to remove CHYLOMICRONS and TRIGLYCERIDES from the blood which has a creamy top layer after standing. Apolipoprotein C-II Deficiency,Hyperchylomicronemia, Familial,Lipoprotein Lipase Deficiency, Familial,Burger-Grutz Syndrome,C-II Anapolipoproteinemia,Chylomicronemia, Familial,Familial Fat-Induced Hypertriglyceridemia,Familial Hyperchylomicronemia,Familial Hyperlipoproteinemia Type 1,Familial LPL Deficiency,Familial Lipoprotein Lipase Deficiency,Hyperlipemia, Essential Familial,Hyperlipemia, Idiopathic, Burger-Grutz Type,Hyperlipoproteinemia Type Ia,Hyperlipoproteinemia Type Ib,Hyperlipoproteinemia, Type I,Hyperlipoproteinemia, Type Ia,Hyperlipoproteinemia, Type Ib,LIPD Deficiency,Lipase D Deficiency,Lipoprotein Lipase Deficiency,Anapolipoproteinemia, C-II,Anapolipoproteinemias, C-II,Apolipoprotein C II Deficiency,Apolipoprotein C-II Deficiencies,Burger Grutz Syndrome,Burger-Grutz Syndromes,C-II Anapolipoproteinemias,Chylomicronemias, Familial,Deficiencies, Apolipoprotein C-II,Deficiencies, Familial LPL,Deficiencies, LIPD,Deficiencies, Lipase D,Deficiencies, Lipoprotein Lipase,Deficiency, Apolipoprotein C-II,Deficiency, Familial LPL,Deficiency, LIPD,Deficiency, Lipase D,Deficiency, Lipoprotein Lipase,Essential Familial Hyperlipemia,Essential Familial Hyperlipemias,Familial Chylomicronemia,Familial Chylomicronemias,Familial Fat Induced Hypertriglyceridemia,Familial Fat-Induced Hypertriglyceridemias,Familial Hyperchylomicronemias,Familial Hyperlipemia, Essential,Familial Hyperlipemias, Essential,Familial LPL Deficiencies,Fat-Induced Hypertriglyceridemia, Familial,Fat-Induced Hypertriglyceridemias, Familial,Hyperchylomicronemias, Familial,Hyperlipemias, Essential Familial,Hyperlipoproteinemia Type Ias,Hyperlipoproteinemia Type Ibs,Hyperlipoproteinemia Type Is,Hyperlipoproteinemias, Type I,Hyperlipoproteinemias, Type Ia,Hyperlipoproteinemias, Type Ib,Hypertriglyceridemia, Familial Fat-Induced,Hypertriglyceridemias, Familial Fat-Induced,LIPD Deficiencies,LPL Deficiencies, Familial,LPL Deficiency, Familial,Lipase D Deficiencies,Lipase Deficiencies, Lipoprotein,Lipoprotein Lipase Deficiencies,Syndrome, Burger-Grutz,Syndromes, Burger-Grutz,Type I Hyperlipoproteinemia,Type I Hyperlipoproteinemias,Type Ia Hyperlipoproteinemia,Type Ia Hyperlipoproteinemias,Type Ib Hyperlipoproteinemia,Type Ib Hyperlipoproteinemias
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008297 Male Males
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children

Related Publications

Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
January 1979, Voprosy meditsinskoi khimii,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
January 1988, Metabolism: clinical and experimental,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
January 1991, Methods in enzymology,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
February 1976, Annals of clinical research,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
December 1975, Journal of applied physiology,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
May 1982, The Journal of nutrition,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
June 1981, Clinica chimica acta; international journal of clinical chemistry,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
January 2001, Ryoikibetsu shokogun shirizu,
Y Kondo, and I Kurobane, and K Omura, and R Sano, and R Abe, and N Chida, and K Tada
July 2007, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!