Studies on the alkylation of choline acetyltransferase by choline mustard aziridinium ion. 1985

R J Rylett, and E H Colhoun

Although a potent irreversible inhibitor of high-affinity choline transport in rat brain synaptosomes, choline mustard aziridinium ion (ChM Az) appeared to be a relatively weak inhibitor of choline acetyltransferase (ChAT) in rat brain homogenates, and evidence for irreversible binding of this compound to the enzyme had not been established. Accordingly, the irreversible inactivation of partially purified rat brain ChAT by ChM Az was studied. This compound is a rather weak inhibitor of the enzyme, with 50% inhibition of ChAT activity achieved following 30 min incubation at 37 degrees C with 0.6 mM ChM Az. This result indicates that although ChM Az has affinity for many nucleophiles there was little diluting effect of the inhibitor in the crude brain homogenate which could be attributed to such reactions (50% inhibition caused by 1.8 mM ChM Az following 10 min incubation). Although the initial binding of ChM Az to ChAT may be of a competitive nature, irreversible bond formation resulted. The time-dependent alkylation reaction conformed to pseudo-first-order kinetics with an observed forward rate constant (kobs) of 0.173 min-1; the half-time (t 1/2) for irreversible binding was about 4 min. The irreversible inactivation of ChAT by ChM Az would appear to be slower than the alkylation of high-affinity choline carriers in synaptosomes by this compound, and the relatively weak inhibitory action of ChM Az against either partially purified ChAT or ChAT activity in crude rat brain homogenates is in striking contrast to previous evidence that ChAT in intact synaptosomes was inhibited irreversibly by lower concentrations of the inhibitor.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009466 Neuromuscular Blocking Agents Drugs that interrupt transmission of nerve impulses at the skeletal neuromuscular junction. They can be of two types, competitive, stabilizing blockers (NEUROMUSCULAR NONDEPOLARIZING AGENTS) or noncompetitive, depolarizing agents (NEUROMUSCULAR DEPOLARIZING AGENTS). Both prevent acetylcholine from triggering the muscle contraction and they are used as anesthesia adjuvants, as relaxants during electroshock, in convulsive states, etc. Neuromuscular Blocker,Neuromuscular Blocking Agent,Neuromuscular Blockers,Agent, Neuromuscular Blocking,Agents, Neuromuscular Blocking,Blocker, Neuromuscular,Blockers, Neuromuscular,Blocking Agent, Neuromuscular,Blocking Agents, Neuromuscular
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R J Rylett, and E H Colhoun
December 1975, Canadian journal of physiology and pharmacology,
R J Rylett, and E H Colhoun
January 1984, The Journal of membrane biology,
R J Rylett, and E H Colhoun
July 1987, Neuroscience,
R J Rylett, and E H Colhoun
February 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Rylett, and E H Colhoun
January 1982, Journal of neuroscience research,
Copied contents to your clipboard!