Post-synaptic activity evoked in the nucleus tractus solitarius by carotid sinus and aortic nerve afferents in the cat. 1985

S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer

Post-synaptic responses evoked in neurones of the nucleus tractus solitarius by electrical stimulation of the carotid sinus, aortic and vagal nerves, alone or in combination, have been studied in anaesthetized cats using both extracellular and intracellular recording techniques. A total of 292 neurones received an input from at least one of the three nerves tested. The activity of the large majority of these cells (249) could only be shown to be altered by stimulation of one of these nerves and in 222 of these cases this was an excitatory response. These responses showed the expected post-synaptic characteristics including temporal summation and, in intracellular records, a summation of evoked excitatory post-synaptic potentials (e.p.s.p.s). The minimum latency to onset of these responses was variable, both for individual cells and for the population as a whole and varied within the range 2-124 ms. In a small number of cells (twenty-seven), the input was purely inhibitory in nature. In neurones showing a tonic discharge this produced a decrease in the rate of firing. This influence was most marked in intracellular records where membrane hyperpolarizations were noted. Again, the latency to onset was variable, in the range 4-27 ms. Convergent inputs from two or more of the nerves were identified in forty-three neurones. The effects of these were always excitatory. They could be observed both as a facilitation of spike activity recorded extracellularly and as summation of subliminally evoked e.p.s.p.s recorded intracellularly. On the basis of threshold voltages and latency to onset, the afferents to these neurones are indistinguishable from those providing an exclusive input. It can be concluded that at least some of the neurones in the nucleus tractus solitarius and its vicinity receive inputs from more than one source. The implications of these observations on the role of this brain-stem area in cardiorespiratory reflexes is discussed.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002346 Carotid Sinus The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure. Sinus, Carotid
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas

Related Publications

S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
February 1992, Journal of neurocytology,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
May 1993, Experimental physiology,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
October 1983, Brain research,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
July 1988, Circulation research,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
October 1995, Journal of the autonomic nervous system,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
November 1987, The American journal of physiology,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
March 2001, Brain research,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
May 1975, The Journal of comparative neurology,
S Donoghue, and R B Felder, and M P Gilbey, and D Jordan, and K M Spyer
December 1988, Neuroscience letters,
Copied contents to your clipboard!