Roles of cell geometry and cellular viscosity in red cell passage through narrow pores. 1985

W H Reinhart, and S Chien

The relative roles of two fundamental determinants of red cell deformability, namely cell size and cellular viscosity, in affecting red cell passage through narrow channels have been assessed by determining the filterability of red cells subjected to osmotic variations. Suspensions of red cells (10(6) cells/microliter) in eight different osmolalities ranging from 172 +/- 3 (mean +/- SD) to 665 +/- 28 mosmol/kg H2O were filtered through polycarbonate sieves with three different pore diameters (2.6 +/- 0.2, 4.5 +/- 0.6, and 6.9 +/- 0.8 micron). The mean corpuscular volume varied inversely with osmolality and ranged from 149 +/- 9 to 67 +/- 10 fl; the mean corpuscular hemoglobin concentration varied directly with osmolality and ranged from 23.7 +/- 0.8 to 55.9 +/- 3.9 g/dl. The filtration data were analyzed with a theoretical model to derive the parameter beta, which is the ratio of resistance in a pore bearing a red blood cell to that in a pore filled with the suspending medium alone. For each pore size, beta showed a V-shaped relationship with osmolality; the optimum osmolality for minimum beta varied inversely with the pore size. For the small 2.6-micron pores, the minimum beta was attained following hyperosmotic shrinkage of the red cells at 400 mosmol/kg H2O, whereas passage through the large 6.9-micron pores was facilitated by hypoosmotic swelling of the red cells in about 200 mosmol/kg H2O. Red cell filtration through small pores is more sensitive to alterations in cell volume, whereas that through large pores is primarily determined by changes in cellular viscosity.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D004907 Erythrocyte Deformability Ability of ERYTHROCYTES to change shape as they pass through narrow spaces, such as the microvasculature. Erythrocyte Filterability,Deformability, Erythrocyte,Filterability, Erythrocyte
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities

Related Publications

W H Reinhart, and S Chien
August 2003, Journal of colloid and interface science,
W H Reinhart, and S Chien
July 1963, Journal of theoretical biology,
W H Reinhart, and S Chien
December 1991, Blood,
W H Reinhart, and S Chien
October 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics,
W H Reinhart, and S Chien
July 2006, Physical review letters,
W H Reinhart, and S Chien
January 1978, Biofizika,
W H Reinhart, and S Chien
November 1969, Proceedings of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!