A model of the cone-L-type horizontal cell circuit of the catfish contains 3 stages. The outer segment consists of a compression factor producing the Naka-Rushton relationship between amplitude of response and intensity and 7 low-pass filters in tandem that produces an absolute delay of about 15 ms. The cone pedicle consists of an internal negative feedback circuit in series with a low-pass filter. The L-type horizontal cell acts as a linear low-pass filter and forms the external negative feedback circuit with the cone pedicle. The system shows piecewise linearity with the feedback gain of the external negative feedback circuit directly proportional to the dc level of the horizontal cell. Thus, at any given mean illuminance the impulse response of the cone and L-HC adequately defines the dynamics of the responses. The conversion of a slow monophasic to a faster biphasic impulse response due to either an increase in mean illuminance or use of a steady annulus results from the change in the characteristic equation as the effective value of the feedback gain changes. By proper adjustment of gains and time constants, the cone-L-HC circuit of the catfish retina simulates the experimental data.