Synaptogenesis in rat cerebral cortex cultures is affected during chronic blockade of spontaneous bioelectric activity by tetrodotoxin. 1985

F van Huizen, and H J Romijn, and A M Habets

Reaggregated occipital cortex cells of 19-day-old fetal rats were grown in a serum-free, chemically defined medium, and chronically exposed to impulse-blocking levels of tetrodotoxin (TTX) in order to study the role of bioelectric activity in synaptogenesis. As judged by phase-contrast microscopy, no differences were noticed in the development of neuronal networks in the TTX-treated vs control cultures. In addition, when TTX was withdrawn from experimental cultures at any stage of development, bioelectric activity qualitatively comparable to that of the control cultures appeared within 1 min. However, quantitative stereological EM analysis revealed a significant retardation in synapse formation and ultrastructural maturation of synaptic junctions during the first 3 weeks. Around 23 days in vitro, the central zone of the reaggregates in control cultures started to degenerate, but not earlier then day 27 in TTX-treated cultures. During this time, the control, but not the experimental cultures showed (in intact tissue regions mainly situated at the outside of the aggregates) a large and selective loss of spine synapses. It is concluded that functional blockade not only retards the early growth and maturation of synaptic networks but also prevents the later occurring selective loss of spine synapses.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F van Huizen, and H J Romijn, and A M Habets
October 2000, Brain research. Developmental brain research,
F van Huizen, and H J Romijn, and A M Habets
January 1991, The European journal of neuroscience,
F van Huizen, and H J Romijn, and A M Habets
January 1991, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
F van Huizen, and H J Romijn, and A M Habets
June 1997, The Journal of comparative neurology,
F van Huizen, and H J Romijn, and A M Habets
January 1987, Radiobiologiia,
F van Huizen, and H J Romijn, and A M Habets
January 1991, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
F van Huizen, and H J Romijn, and A M Habets
October 1966, Bollettino della Societa italiana di biologia sperimentale,
F van Huizen, and H J Romijn, and A M Habets
October 1975, Pediatriia,
Copied contents to your clipboard!