Altered glycosaminoglycan metabolism in injured arterial wall. 1985

B G Salisbury, and D P Hajjar, and C R Minick

Glycosaminoglycans (GAG) are believed to be important in the pathogenesis of atherosclerosis. We have previously demonstrated that areas of injured aorta that have been re-endothelialized accumulate increased amounts of lipid and GAG when compared to areas remaining de-endothelialized. We have now examined the net incorporation of labeled precursors into the individual GAG present in both re-endothelialized and de-endothelialized areas of rabbit aorta. Aortic tissue was examined at 2-3 and 10-14 weeks after a denuding injury by incubating tissue minces with [3H]glucosamine and sodium [35S]sulfate for 24 hr. Following incubation, the aortic GAG were isolated and assayed for uronic acid concentration and radioactivity. Results indicate that the total GAG concentration was significantly greater (P less than 0.001) in the re-endothelialized (9.46 +/- 0.29 micrograms/mg lipid-free dry residues (LFDR), mean +/- SE) as compared to de-endothelialized (7.89 +/- 0.43 micrograms/mg LFDR) areas. The concentration in uninjured aorta was 9.01 +/- 0.69. The difference between the injured tissues was attributable to increased concentrations of sulfated GAG. Hyaluronic acid and chondroitin sulfate were the most metabolically active of the GAG in either uninjured or injured aorta, together accounting for over 75% of the 3H label. The 3H specific radioactivities of the four GAG in the short-term, re-endothelialized subgroup were all increased nearly twice that found in uninjured and de-endothelialized tissues. With the exception of heparan sulfate, no significant differences were noted in the 3H specific radioactivities between the re-endothelialized and de-endothelialized areas in the long-term subgroup. These results indicate that, relative to adjacent areas of de-endothelialization, GAG preferentially accumulate in re-endothelialized areas even as early as 2-3 weeks following a denuding injury. Overall, metabolic data suggest that increased synthesis is responsible for this effect, although the net contribution of degradative processes cannot be overlooked since GAG turnover was not specifically examined. Thus, it is possible that regenerated endothelium may modify the GAG metabolism of the arterial wall following arterial injury.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D003871 Dermatan Sulfate A naturally occurring glycosaminoglycan found mostly in the skin and in connective tissue. It differs from CHONDROITIN SULFATE A (see CHONDROITIN SULFATES) by containing IDURONIC ACID in place of glucuronic acid, its epimer, at carbon atom 5. (from Merck, 12th ed) Chondroitin Sulfate B,beta-Heparin,Sulfate B, Chondroitin,Sulfate, Dermatan,beta Heparin
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D005260 Female Females
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D013462 Sulfur Radioisotopes Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes. Radioisotopes, Sulfur

Related Publications

B G Salisbury, and D P Hajjar, and C R Minick
January 1981, The American journal of pathology,
B G Salisbury, and D P Hajjar, and C R Minick
November 2015, Circulation research,
B G Salisbury, and D P Hajjar, and C R Minick
January 1995, VASA. Zeitschrift fur Gefasskrankheiten,
B G Salisbury, and D P Hajjar, and C R Minick
February 1984, The Journal of surgical research,
B G Salisbury, and D P Hajjar, and C R Minick
May 1986, The Journal of urology,
B G Salisbury, and D P Hajjar, and C R Minick
January 1950, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
B G Salisbury, and D P Hajjar, and C R Minick
January 1974, Advances in cardiology,
B G Salisbury, and D P Hajjar, and C R Minick
April 1988, Archives of biochemistry and biophysics,
B G Salisbury, and D P Hajjar, and C R Minick
January 1972, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
B G Salisbury, and D P Hajjar, and C R Minick
January 1961, Journal of atherosclerosis research,
Copied contents to your clipboard!