Vascular monoamine oxidase activity in the rat brain: variation with the substrate and the vascular segment. 1985

F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz

Brain vascular monoamine oxidase (MAO) was assayed in order to determine (a) whether microvessel MAO is more or less specific for certain substrates and (b) if the extraparenchymal, pial arteries possess an MAO activity as high as that in the microvessels. Rat brain microvessels were prepared by gentle homogenisation of grey matter, followed by filtration and differential centrifugation of the matter retained. Pial arteries were carefully freed of the meninges and cut into small segments. For comparison, rat mesenteric arteries were also dissected out and cut up. MAO was assayed by measuring the rate of oxygen consumption in a small cell with a Clark electrode. Although a high microvessel MAO activity (2.2 +/- 0.3 nmol min-1 mg prot.-1) was found using noradrenaline as substrate, significantly higher rates were found with tyramine, serotonin and beta-phenyl-ethylamine. By contrast, both pial and mesenteric arteries showed a 6-7 fold lower activity (substrate tyramine). These results indicate first, that a certain specialisation of the microvessel MAO activity exists which is apparently independent of the classical A or B-form category of the substrates, and second, that the extraparenchymal vessels (pial arteries) appear to possess significantly lower MAO activity, in accordance with the concept that blood-brain properties are induced by the cerebral parenchyma.

UI MeSH Term Description Entries
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D014439 Tyramine An indirect sympathomimetic that occurs naturally in cheese and other foods. Tyramine does not directly activate adrenergic receptors, but it can serve as a substrate for adrenergic uptake systems and MONOAMINE OXIDASE to prolong the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals and may be a neurotransmitter in some invertebrate nervous systems. 4-(2-Aminoethyl)phenol,4-Hydroxyphenethylamine,p-Tyramine,para-Tyramine,4 Hydroxyphenethylamine
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
March 1977, British journal of pharmacology,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
June 1978, Life sciences,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
July 1971, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
July 1974, Biochemical pharmacology,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
July 1968, Archives internationales de pharmacodynamie et de therapie,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
May 1984, Neurochemical research,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
April 1991, Biochemistry international,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
May 1969, Journal of neurochemistry,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
July 1980, Journal of neurochemistry,
F Lasbennes, and R Sercombe, and C Verrecchia, and J Seylaz
January 1976, Journal of neural transmission,
Copied contents to your clipboard!