Ultrastructural features of a human neuroblastoma cell line treated with retinoic acid. 1985

J A Robson, and N Sidell

This report examines the morphological changes that occur in a line of human neuroblastoma cells (LA-N-5) following treatment with retinoic acid, in vitro. The results demonstrate that retinoic acid induces pronounced differentiation of these cells. Perikarya aggregate into tight clusters and extend long processes that are frequently fasciculated. Growth cones appear at the ends of these processes. Transmission electron microscopy reveals that after 10 days of treatment these long neurites give rise to varicosities which contain clusters of large dense-core vesicles and smaller clear vesicles. After 18 days of treatment the cultures cease to differentiate further. The pattern of neurite outgrowth is very complex by this point and the frequency of growth cones and vesicle-containing varicosities is greatly increased compared with shorter treatments. Most of these varicosities contain a mix of large dense-core vesicles and smaller clear vesicles and in some profiles the clear vesicles are round while in others they are pleomorphic. Despite this increase in the number of vesicle-containing profiles no membrane specializations were seen that resemble mature synapses. The present results demonstrate that retinoic acid can produce morphological changes in these cells in culture, and that these changes closely mimic those of normal differentiating neurons in culture. Considered with previous studies, these findings suggest that this cell line might provide a useful model system for studying neural differentiation.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid

Related Publications

J A Robson, and N Sidell
November 1984, Experimental cell research,
J A Robson, and N Sidell
April 1993, Brain research. Developmental brain research,
J A Robson, and N Sidell
June 1990, Cancer genetics and cytogenetics,
J A Robson, and N Sidell
May 1987, [Rinsho ketsueki] The Japanese journal of clinical hematology,
J A Robson, and N Sidell
January 1994, Progress in clinical and biological research,
Copied contents to your clipboard!