Hexamine cobalt chloride promotes intermolecular ligation of blunt end DNA fragments by T4 DNA ligase. 1985

J R Rusche, and P Howard-Flanders

Hexamine cobalt chloride (HCC) increases the efficiency of blunt end ligation by T4 DNA ligase about 50 fold. Maximum stimulation occurs when standard buffers for ligation are supplemented with 1 mM HCC. All the ligation events are intermolecular regardless of the initial DNA concentration. In the presence of monovalent cations (eg. 25 mM KCl) HCC still increases the extent of T4 catalyzed ligation but intramolecular ligation products are also formed. Therefore, intermolecular ligation can be performed rapidly and at low DNA concentrations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D011118 Polynucleotide Ligases Catalyze the joining of preformed ribonucleotides or deoxyribonucleotides in phosphodiester linkage during genetic processes. EC 6.5.1. Polynucleotide Synthetases,Ligases, Polynucleotide,Synthetases, Polynucleotide
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

J R Rusche, and P Howard-Flanders
July 1982, Biochemical and biophysical research communications,
J R Rusche, and P Howard-Flanders
December 2005, The FEBS journal,
J R Rusche, and P Howard-Flanders
January 2012, Methods in molecular biology (Clifton, N.J.),
J R Rusche, and P Howard-Flanders
September 1993, BioTechniques,
J R Rusche, and P Howard-Flanders
August 1981, Nucleic acids research,
J R Rusche, and P Howard-Flanders
February 1996, Trends in genetics : TIG,
J R Rusche, and P Howard-Flanders
June 2018, Chemical communications (Cambridge, England),
Copied contents to your clipboard!