Prominent role of DT-diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity. 1985

S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora

Rat liver postmitochondrial (S-12) fractions accounted for the bulk of the activity of whole cell homogenates in reducing chromium(VI) and accordingly in decreasing its mutagenicity. Both cytosolic (S-105) and microsomal fractions concurred to this process, which in all subcellular preparations tested was selectively induced by phenobarbital and especially by Aroclor 1254, but not by 3-methylcholanthrene. Cytosolic fractions were markedly more efficient in reducing chromium(VI) than microsomal fractions recovered from the same amount of tissue (liver or lung), although the latter preparations had a higher specific activity. The microsomal activity was exclusively NADPH dependent. A minor part of the cytosolic reduction was determined by nonenzymatic components, notably by some electron donors and chiefly by reduced glutathione, which proved to reduce chromium(VI) at physiological concentrations. However, also in cytosolic fractions, the most important contribution to chromium reduction was enzyme catalyzed, as shown by the following properties: thermolability; requirement for exogenous NADH or NADPH [supplied as such or in the form of a NADPH-generating system (S-9 mix)]; and saturation by chromium(VI). The likely involvement of DT-diaphorase in this metabolic process is supported by several findings, including its sharp pH dependence and its partial suppression by known inhibitors of this enzyme protein, such as p-chloromercuribenzoate, L-thyroxine, and dicumarol (which conversely did not counteract the metabolic deactivation of the other direct-acting mutagens 2-methoxy-6-chloro-9-[3-(2-chloroethyl)aminopropylamino]acridine 2HCl and epichlorohydrin). Similarly, cytosolic reduction of chromium(VI) was partially inhibited by selective metabolic depletors of both coenzymes of DT-diaphorase, i.e., NADPH and NADH. Pretreatment of rats with enzyme inducers (phenobarbital and 3-methylcholanthrene) stimulated the activity of DT-diaphorase in liver cytosolic fractions. A dramatic stimulation (35 to 40 times over untreated controls) was produced by Aroclor 1254, which also coinduced the liver cytosolic activity of enzymes involved in the glucose 6-phosphate-dependent pathway of both nicotinamide-adenine-dinucleotide phosphate and glutathione reduction (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase). In the lung cytosol, a slight yet significant stimulation of some of these enzyme activities was determined by the daily intratracheal instillations of high doses of chromium(VI) itself for 4 weeks, a condition which has been found to enhance the pulmonary metabolism of this metal ion.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction

Related Publications

S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
July 1992, Carcinogenesis,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
January 1986, Progress in clinical and biological research,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
April 1988, Carcinogenesis,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
February 1963, Biochimica et biophysica acta,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
March 1997, Carcinogenesis,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
April 1990, Chemical & pharmaceutical bulletin,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
January 2005, Chemical research in toxicology,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
June 1982, Archives of biochemistry and biophysics,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
October 1974, The Journal of biological chemistry,
S De Flora, and A Morelli, and C Basso, and M Romano, and D Serra, and A De Flora
March 2002, Journal of medicinal chemistry,
Copied contents to your clipboard!