Nucleosides. 133. Synthesis of 5-alkenyl-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)cytosines and related pyrimidine nucleosides as potential antiviral agents. 1985

M E Perlman, and K A Watanabe, and R F Schinazi, and J J Fox

The synthesis of 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)cytosines with a halovinyl or vinyl substituent at C-5 was accomplished from the corresponding 5-iodo (FIAC, 1) and/or 5-chloromercuri nucleoside analogues with use of Li2PdCl4- and Pd(OAc)2-mediated coupling reactions. Thiation of the benzoylated derivative of the 5-ethyluracil nucleoside 3 followed by S-methylation and then ammonolysis provided 5-ethyl-2'-fluoro-ara-C. 5-Ethynyl-2'-fluoro-ara-C (19a) and 5-ethynyl-2'-fluoro-ara-U (19b) were also obtained from the persilylated 5-iodo nucleosides 1 and 16, respectively, by PdII/CuI catalyzed coupling with (trimethylsilyl)acetylene. With use of selective sugar deprotection of the initial coupling products with H2O/Me2SO, the corresponding 5-[2-(trimethylsilyl)ethynyl] derivatives 18a and 18b could be isolated. Most of the new compounds showed activity in vitro against both HSV-1 and HSV-2, as did the known corresponding 5-alkenyluracil nucleosides synthesized earlier. The 5-vinylcytosine and -uracil nucleosides 10 and 24, respectively, were highly effective against HSV-1 (ED90 = 0.40 and 0.043 microM, respectively) and HSV-2 (ED90 = 0.59 and 0.56 microM, respectively). Unlike BVDU, the 2'-fluoroarabinosyl derivatives of 5-(halovinyl)cytosine and -uracil showed activity against both types of herpes simplex virus. The therapeutic indices of these compounds are in some cases superior to those of 2'-fluoro-5-methyl-ara-U (FMAU, 2). Moderate antileukemic activity was observed in vitro for the 5-alkynyl and 5-vinyl compounds. The competition of these compounds with thymidine for viral-induced thymidine kinases was also studied.

UI MeSH Term Description Entries
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M E Perlman, and K A Watanabe, and R F Schinazi, and J J Fox
January 1984, Journal of medicinal chemistry,
M E Perlman, and K A Watanabe, and R F Schinazi, and J J Fox
February 1975, Carbohydrate research,
M E Perlman, and K A Watanabe, and R F Schinazi, and J J Fox
December 1993, Journal of medicinal chemistry,
M E Perlman, and K A Watanabe, and R F Schinazi, and J J Fox
July 1996, Journal of medicinal chemistry,
M E Perlman, and K A Watanabe, and R F Schinazi, and J J Fox
January 2003, Nucleosides, nucleotides & nucleic acids,
Copied contents to your clipboard!