mRNA sequence of three respiratory syncytial virus genes encoding two nonstructural proteins and a 22K structural protein. 1985

N Elango, and M Satake, and S Venkatesan

An mRNA sequence of two human respiratory syncytial viral nonstructural protein genes and of a gene for a 22,000-molecular-weight (22K) protein was obtained by cDNA cloning and DNA sequencing. Sequences corresponding to the 5' ends of the respective transcripts were deduced directly by primer extension and dideoxy nucleotide sequencing of the mRNAs. The availability of a bicistronic clone (pRSC6) confirmed the gene order for this portion of the genome. Contrary to other unsegmented negative-stranded RNA viruses, a 19-nucleotide intercistronic sequence was present between the NS1 and NS2 genes. The translation of cloned viral sequences in the bicistronic and monocistronic clones (pRSNS1 and pRSNS2) revealed two moderately hydrophobic proteins of 15,568 and 14,703 daltons. Their similarity in molecular size explained our earlier inability to resolve these proteins. A DNA sequence of an additional recombinant plasmid (pRSA2) revealed a long open reading frame encoding a 22,156-dalton protein containing 194 amino acids. It was relatively basic and moderately hydrophobic. A protein of this size was readily translated in vitro from a viral mRNA hybrid selected by this plasmid and corresponded to an unglycosylated 22K protein seen in purified extracellular virus but not associated with detergent- and salt-resistant cores. A second open reading frame of 90 amino acids partially overlapping with the C terminus of the 22K protein was also present within this sequence. This was reminiscent of the viral matrix protein gene which was previously shown by us to contain two overlapping reading frames. The finding of three additional viral transcripts encoding at least three identifiable proteins in human respiratory syncytial virus was a novel departure from the usual genetic organization of paramyxoviruses. The 5' ends of all three transcripts had a 5'NGGGCAAAU sequence that is common to all viral transcripts analyzed so far. Although there was no obvious homology immediately upstream of the polyadenylate tail, an AGUUA (AGUAA in the case of NS2) was present between 1 and 4 nucleotides upstream of the polyadenylate end of NS1 and 22K protein mRNAs.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D012136 Respiratory Syncytial Viruses A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported. Chimpanzee Coryza Agent,Orthopneumovirus,RSV Respiratory Syncytial Virus,Chimpanzee Coryza Agents,Coryza Agent, Chimpanzee,Orthopneumoviruses,Respiratory Syncytial Virus,Syncytial Virus, Respiratory,Virus, Respiratory Syncytial
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

N Elango, and M Satake, and S Venkatesan
April 1984, Journal of virology,
N Elango, and M Satake, and S Venkatesan
March 2021, Proceedings of the National Academy of Sciences of the United States of America,
N Elango, and M Satake, and S Venkatesan
October 1985, Virology,
N Elango, and M Satake, and S Venkatesan
June 2016, Molecular & cellular proteomics : MCP,
Copied contents to your clipboard!