[Use of visual evoked potentials in neurology--a review. I]. 1985

R Cammann

In 1972, Halliday and co-workers [13] inaugurated the rotary mirror method for producing the visually evoked potential (VEP) by means of pattern reversal. The so-called pattern reversal VEP (PRVEP) is at present frequently obtained by means of a television monitor (TV stimulation) or light-emitting diode system (LED system). Independent of its special advantages and disadvantages, the stimulation by means of these systems as compared to the simple flash stimulation potentials seems to evoke with considerably better reproduceable latency indices, which enables a clearer separation of normal and pathological values. This is in particular true of the P100 component, which is the most prominent part of the VEP. The size of the individual squares of the chess-board pattern, of the whole stimulus field, the brightness and the intensity of the contrasts exert an influence on amplitudes and latencies of the PRVEP. The hitherto lacking standardisation of the recording technique makes it necessary that laboratory develops its own standard values. The domain of the PRVEP at the time being is the demonstration of demyelinising processes in the region of the optical nerve. That is why the PRVEP plays an important role in the diagnosis of multiple sclerosis, especially in subclinical processes and seemingly only spinal symptoms. Extension of the P100 latency, however, are not specific of multiple sclerosis and can also be caused by other lesions of the optical nerve or by a delayed maturing of the neuronal systems generating the VEP.

UI MeSH Term Description Entries
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D009901 Optic Nerve Diseases Conditions which produce injury or dysfunction of the second cranial or optic nerve, which is generally considered a component of the central nervous system. Damage to optic nerve fibers may occur at or near their origin in the retina, at the optic disk, or in the nerve, optic chiasm, optic tract, or lateral geniculate nuclei. Clinical manifestations may include decreased visual acuity and contrast sensitivity, impaired color vision, and an afferent pupillary defect. Cranial Nerve II Diseases,Foster-Kennedy Syndrome,Optic Disc Disorders,Optic Disk Disorders,Optic Neuropathy,Second Cranial Nerve Diseases,Cranial Nerve II Disorder,Neural-Optical Lesion,Disc Disorder, Optic,Disk Disorder, Optic,Disorder, Optic Disc,Foster Kennedy Syndrome,Lesion, Neural-Optical,Neural Optical Lesion,Neural-Optical Lesions,Neuropathy, Optic,Optic Disc Disorder,Optic Disk Disorder,Optic Nerve Disease,Optic Neuropathies,Syndrome, Foster-Kennedy
D009902 Optic Neuritis Inflammation of the optic nerve. Commonly associated conditions include autoimmune disorders such as MULTIPLE SCLEROSIS, infections, and granulomatous diseases. Clinical features include retro-orbital pain that is aggravated by eye movement, loss of color vision, and contrast sensitivity that may progress to severe visual loss, an afferent pupillary defect (Marcus-Gunn pupil), and in some instances optic disc hyperemia and swelling. Inflammation may occur in the portion of the nerve within the globe (neuropapillitis or anterior optic neuritis) or the portion behind the globe (retrobulbar neuritis or posterior optic neuritis). Neuropapillitis,Retrobulbar Neuritis,Anterior Optic Neuritis,Posterior Optic Neuritis,Anterior Optic Neuritides,Neuritides, Anterior Optic,Neuritides, Optic,Neuritides, Posterior Optic,Neuritides, Retrobulbar,Neuritis, Anterior Optic,Neuritis, Optic,Neuritis, Posterior Optic,Neuritis, Retrobulbar,Neuropapillitides,Optic Neuritides,Optic Neuritides, Anterior,Optic Neuritides, Posterior,Optic Neuritis, Anterior,Optic Neuritis, Posterior,Posterior Optic Neuritides,Retrobulbar Neuritides
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001766 Blindness The inability to see or the loss or absence of perception of visual stimuli. This condition may be the result of EYE DISEASES; OPTIC NERVE DISEASES; OPTIC CHIASM diseases; or BRAIN DISEASES affecting the VISUAL PATHWAYS or OCCIPITAL LOBE. Amaurosis,Bilateral Blindness,Blindness, Bilateral,Blindness, Legal,Blindness, Monocular,Blindness, Unilateral,Sudden Visual Loss,Unilateral Blindness,Blindness, Acquired,Blindness, Complete,Blindness, Hysterical,Blindness, Transient,Acquired Blindness,Amauroses,Bilateral Blindnesses,Complete Blindness,Hysterical Blindness,Legal Blindness,Monocular Blindness,Sudden Visual Losses,Transient Blindness,Visual Loss, Sudden
D003937 Diagnosis, Differential Determination of which one of two or more diseases or conditions a patient is suffering from by systematically comparing and contrasting results of diagnostic measures. Diagnoses, Differential,Differential Diagnoses,Differential Diagnosis
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R Cammann
February 1983, La Revue du praticien,
R Cammann
January 1982, Bulletin of the Los Angeles neurological societies,
R Cammann
November 1984, Revue d'electroencephalographie et de neurophysiologie clinique,
R Cammann
January 1985, The Western journal of medicine,
R Cammann
August 2017, Journal of neurology, neurosurgery, and psychiatry,
R Cammann
January 1988, Clinical neurology and neurosurgery,
R Cammann
November 1970, Annales d'oculistique,
R Cammann
January 1980, Neurologie et psychiatrie,
R Cammann
January 2022, Frontiers in neuroscience,
Copied contents to your clipboard!