Hepatic carbamoyl phosphate metabolism. Role of cytosolic and mitochondrial carbamoyl phosphate in de novo pyrimidine synthesis. 1985

J Pausch, and J Rasenack, and D Häussinger, and W Gerok

The interrelationship between the two carbamoyl phosphate pools in intact hepatocytes and intact liver was studied with respect to de novo pyrimidine synthesis by use of selective inhibitors of the mitochondrial and the cytosolic carbamoyl-phosphate synthetase. Inhibition of mitochondrial carbamoyl phosphate synthesis by 4-pentenoate was without effect on galactosamine-stimulated pyrimidine synthesis. Conditions favouring mitochondrial carbamoyl phosphate accumulation, like excess ammonium ions or L-norvaline, led to an increase in pyrimidine synthesis bypassing the feedback inhibition of cytosolic carbamoyl-phosphate synthetase by UTP. A stimulation of pyrimidine synthesis was not observed when the carbamoyl phosphate accumulation was due to aspartate deficiency in the presence of aminooxyacetate. The full response of pyrimidine synthesis to excess ammonium ions was restored, even in the presence of aminooxyacetate, when aspartate was substituted. This is explained by an inhibition of aspartate carbamoyltransferase flux [in view of the Km (aspartate = 0.7 mmol/l) of this enzyme] resulting from a 90% decrease in aspartate tissue levels. Acivicin, the inhibitor of cytosolic carbamoyl-phosphate synthetase, completely abolished the galactosamine-induced stimulation of pyrimidine synthesis, but was without effect on the stimulation of pyrimidine synthesis by ammonium ions and L-norvaline. It is concluded that experimental changes in mitochondrial carbamoyl phosphate content exert effects on de novo pyrimidine synthesis; however, it is considered unlikely that relevant amounts of mitochondrial carbamoyl phosphate are used for pyrimidine synthesis under physiological conditions. In addition the data point to a potential regulatory role of aspartate in hepatic pyrimidine synthesis.

UI MeSH Term Description Entries
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009954 Ornithine Carbamoyltransferase A urea cycle enzyme that catalyzes the formation of orthophosphate and L-citrulline (CITRULLINE) from CARBAMOYL PHOSPHATE and L-ornithine (ORNITHINE). Deficiency of this enzyme may be transmitted as an X-linked trait. EC 2.1.3.3. Ornithine Transcarbamylase,Ornithine Carbamylphosphate Transferase,Carbamoyltransferase, Ornithine,Carbamylphosphate Transferase, Ornithine,Transcarbamylase, Ornithine,Transferase, Ornithine Carbamylphosphate
D009963 Orotic Acid An intermediate product in PYRIMIDINE synthesis which plays a role in chemical conversions between DIHYDROFOLATE and TETRAHYDROFOLATE. Potassium Orotate,Sodium Orotate,Zinc Orotate,Acid, Orotic,Orotate, Potassium,Orotate, Sodium,Orotate, Zinc
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002219 Carbamates Derivatives of carbamic acid, H2NC( Carbamate,Aminoformic Acids,Carbamic Acids,Acids, Aminoformic,Acids, Carbamic
D002221 Carbamyl Phosphate The monoanhydride of carbamic acid with PHOSPHORIC ACID. It is an important intermediate metabolite and is synthesized enzymatically by CARBAMYL-PHOSPHATE SYNTHASE (AMMONIA) and CARBAMOYL-PHOSPHATE SYNTHASE (GLUTAMINE-HYDROLYZING). Carbamoyl Phosphate,Dilithium Carbamyl Phosphate,Carbamyl Phosphate, Dilithium,Phosphate, Carbamoyl,Phosphate, Carbamyl,Phosphate, Dilithium Carbamyl

Related Publications

J Pausch, and J Rasenack, and D Häussinger, and W Gerok
February 1996, Biochemical and biophysical research communications,
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
January 2011, Journal of the American Chemical Society,
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
October 1980, Biochimica et biophysica acta,
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
January 1985, Archives of biochemistry and biophysics,
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
July 1994, The Journal of applied bacteriology,
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
October 1984, [Rinsho ketsueki] The Japanese journal of clinical hematology,
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
October 2002, Plant molecular biology,
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
March 2013, Science (New York, N.Y.),
J Pausch, and J Rasenack, and D Häussinger, and W Gerok
August 1981, Experimental cell research,
Copied contents to your clipboard!