Creatine phosphokinase: isoenzymes in Torpedo marmorata. 1985

V Witzemann

Creatine phosphokinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) is the major constituent of the "low-salt-soluble" proteins of the electric organ from Torpedo marmorata. The denatured subunits of the enzyme have an apparent Mr of 43 000 and isoelectric points ranging between pH 6.2 and pH 6.5. Identical properties are found for the creatine phosphokinase from Torpedo muscle tissue. Anti-(electric organ creatine phosphokinase) antibodies are specific for the muscle-type enzyme and do not cross-react with enzymes present in Torpedo brain and electric lobe tissue. Biochemical and immunochemical properties of the enzyme associated with acetylcholine-receptor-enriched membranes show that this enzyme is as the "low-salt-soluble" electric organ enzyme of the muscle-specific type. In vitro translation of electric organ poly(A)-rich mRNA in a reticulocyte lysate reveals the abundance of mRNA specific for muscle creatine phosphokinase. During embryonic development of the electrocyte a continuous increase of translatable amounts of this mRNA is observed. No brain-type polypeptides are synthesized. The subunits of the brain-specific enzyme differ in molecular mass (Mr approximately equal to 42000) and isoelectric properties (pI approximately equal to 7.0-7.2). The unexpected finding that the brain forms are more basic than the muscle-specific enzyme is supported by agarose and cellulose acetate electrophoresis and ion-exchange chromatography properties.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

V Witzemann
October 1978, Hawaii medical journal,
V Witzemann
July 1965, Nature,
V Witzemann
November 1969, Minerva pediatrica,
V Witzemann
April 1975, Minnesota medicine,
V Witzemann
January 1971, The Journal of pediatrics,
V Witzemann
January 1970, Acta neurologica Belgica,
V Witzemann
March 1981, Revista clinica espanola,
V Witzemann
June 1981, Southern medical journal,
V Witzemann
January 1976, Nihon rinsho. Japanese journal of clinical medicine,
V Witzemann
January 1979, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!