Reactivity of five N-acetylgalactosamine-recognizing lectins with preimplantation embryos, early postimplantation embryos, and teratocarcinoma cells of the mouse. 1985

M Sato, and T Muramatsu

The expression of receptors for N-acetylgalactosamine-recognizing lectins, namely Helix pomatia agglutinin (HPA), Sophora japonica agglutinin (SJA), Bauhinia purpurea agglutinin (BPA), Vicia villosa agglutinin (VVA), and Wistaria floribunda agglutinin (WFA) was studied in early mouse embryos and teratocarcinoma cells. Each of these lectins as well as Dolichos biflorus agglutinin (DBA) bound differently to early embryonic cells, with the exception of VVA and WFA which showed indistinguishable reactivities. SJA reacted intensely with visceral endoderm, but hardly at all with parietal and primitive endoderm. Therefore, SJA will be useful for analyzing the mechanism of visceral-endoderm formation. Furthermore, the inner cell mass (ICM) of early blastocysts reacted intensely with DBA, while the ICM of late blastocysts reacted only faintly with this lectin. Primary endoderm derived from the ICM reacted faintly with SJA, HPA, and DBA, and these reactivities increased again during the differentiation of the endoderm. Therefore, these three lectins could be used in the analysis of early stages during the differentiation of endoderm from the ICM. The results illustrate the highly complex nature of developmentally regulated alterations of cell-surface carbohydrates during the early stages of embryogenesis.

UI MeSH Term Description Entries
D008297 Male Males
D009028 Morula An early embryo that is a compact mass of about 16 BLASTOMERES. It resembles a cluster of mulberries with two types of cells, outer cells and inner cells. Morula is the stage before BLASTULA in non-mammalian animals or a BLASTOCYST in mammals. Morulas
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011975 Receptors, Mitogen Glycoprotein molecules on the surface of B- and T-lymphocytes, that react with molecules of antilymphocyte sera, lectins, and other agents which induce blast transformation of lymphocytes. Lectin Receptors,Mitogen Receptors,Receptors, Lectin,Mitogen Receptor,Receptor, Mitogen
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002970 Cleavage Stage, Ovum The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA. Segmentation Stage, Ovum,Cleavage Stages, Ovum,Ovum Cleavage Stage,Ovum Cleavage Stages,Ovum Segmentation Stage,Ovum Segmentation Stages,Segmentation Stages, Ovum
D005260 Female Females
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D005688 Galactosamine

Related Publications

M Sato, and T Muramatsu
August 1980, Journal of embryology and experimental morphology,
M Sato, and T Muramatsu
January 2018, Methods in molecular biology (Clifton, N.J.),
M Sato, and T Muramatsu
July 2012, Anatomical record (Hoboken, N.J. : 2007),
M Sato, and T Muramatsu
November 1975, Nature,
M Sato, and T Muramatsu
January 1987, Development (Cambridge, England),
M Sato, and T Muramatsu
November 1989, Development (Cambridge, England),
Copied contents to your clipboard!