Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35 Cl NMR study. 1985

J J Falke, and S I Chan

Band 3 catalyzes the one-for-one exchange of monovalent anions across the red cell membrane. At least two anion binding sites have been postulated to exist on the transport unit: 1) a transport site that has been observed by saturation kinetics and by 35 Cl NMR studies of chloride binding, and 2) a 35Cl NMR-invisible inhibitory site that has been proposed to explain the inhibition of anion exchange at large anion concentrations. A number of independent studies have indicated that the transport site is alternately exposed to different sides of the membrane during the transport cycle. Yet the role, if any, of the postulated inhibitory site in the transport cycle is not known. Here it is shown that: 1) when the [Cl-], [Br-], or pH is varied, the band 3 transport sites on both sides of the membrane behave like a homogeneous population of simple anion binding sites in 35Cl NMR experiments, and 2) when the [Cl-] is varied, the outward-facing transport site behaves like a simple anion binding site. These results indicate that the postulated inhibitory site has no effect on chloride binding to the transport site. Instead, the results are quantitatively consistent with the ping-pong model (Gunn, R. B., and Frölich, O. (1979) J. Gen. Physiol. 74, 351-374), which states that the transport site is the only site involved in the transport cycle. Expressions are derived for the macroscopically observed characteristics of a ping-pong transporter: these characteristics are shown to be weighted averages of the microscopic properties of the inward- and outward-facing conformations of the transport site. In addition to supporting the simplicity of the transport mechanism, the high pH titration curve for chloride binding to the transport site provides insight into the structure of the site. The macroscopically observed pKA = 11.1 +/- 0.1 in the leaky ghost system indicates that an arginine must provide the essential positive charge in the inward- or outward-facing conformation of the transport site, or in both conformations.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D001966 Bromine A halogen with the atomic symbol Br, atomic number 35, and atomic weight 79.904. It is a volatile reddish-brown liquid that gives off suffocating vapors, is corrosive to the skin, and may cause severe gastroenteritis if ingested. Bromine-79,Bromine 79
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002713 Chlorine An element with atomic symbol Cl, atomic number 17, and atomic weight 35, and member of the halogen family. Chlorine Gas,Chlorine-35,Cl2 Gas,Chlorine 35,Gas, Chlorine,Gas, Cl2
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3

Related Publications

J J Falke, and S I Chan
December 1974, FEBS letters,
J J Falke, and S I Chan
July 1969, FEBS letters,
J J Falke, and S I Chan
November 2016, Food research international (Ottawa, Ont.),
J J Falke, and S I Chan
December 2021, American journal of physiology. Cell physiology,
J J Falke, and S I Chan
February 1972, The Journal of biological chemistry,
Copied contents to your clipboard!