Studies of synthetic peptide analogs of the amphipathic helix. Correlation of structure with function. 1985

B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest

The four peptide analogs of the amphipathic helix whose interactions with dimyristoyl phosphatidylcholine were described in the preceding paper were compared with apolipoproteins (apo) A-I and A-II in ability to displace native apolipoprotein from high density lipoprotein (HDL) and in ability to activate lecithin:cholesterol acyltransferase. The rank order of the ability of the four peptide analogs to displace apo-A-I from intact HDL was 18A-Pro-18A greater than 18A greater than des-Val10-18A greater than reverse-18A, the same order suggested in the preceding paper for relative lipid affinities. Modified HDL from which 40% of the apo-A-I had been displaced by 18A was indistinguishable from unmodified HDL in its ability to act as a lecithin:cholesterol acyltransferase substrate. This suggests that the easily displaced apo-A-I molecules in polydisperse HDL are relatively ineffectual as lecithin:cholesterol acyltransferase activators and/or 18A replaces the lecithin:cholesterol acyltransferase activity lost. The peptide analog 18A-Pro-18A was found to be a powerful activator of lecithin:cholesterol acyltransferase when incubated with unilamellar egg phosphatidylcholine (PC) vesicles, reaching 140% of the activity of apo-A-I at a 1:1.75 peptide-to-egg PC ratio. In another experiment, it was found that discoidal egg PC complexes of 18A-Pro-18A, 18A, and des-Val10-18A, formed by cholate dialysis, had 30-45% of the activity of apo-A-I/egg PC discoidal complexes, also formed by cholate dialysis, at the same peptide/lipid weight ratio. Examination of the structures formed when the 18A-Pro-18A peptide was incubated with unilamellar egg PC vesicles indicated that the ability of 18A-Pro-18A to exceed apo-A-I in lecithin:cholesterol acyltransferase activating ability is due to the spontaneous conversion by 18A-Pro-18A of egg PC vesicles to small protein annulus-bilayer disc structures. Apo-A-I, apo-A-II, nor any of the other three peptide analogs of the amphipathic helix studied were able to convert a significant fraction of egg PC unilamellar vesicles to discoidal structures.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007862 Phosphatidylcholine-Sterol O-Acyltransferase An enzyme secreted from the liver into the plasma of many mammalian species. It catalyzes the esterification of the hydroxyl group of lipoprotein cholesterol by the transfer of a fatty acid from the C-2 position of lecithin. In familial lecithin:cholesterol acyltransferase deficiency disease, the absence of the enzyme results in an excess of unesterified cholesterol in plasma. Lecithin Cholesterol Acyltransferase,Cholesterol Ester Lysolecithin Acyltransferase,Lecithin Acyltransferase,Phosophatidylcholine-Sterol Acyltransferase,Acyltransferase, Lecithin,Acyltransferase, Lecithin Cholesterol,Acyltransferase, Phosophatidylcholine-Sterol,Cholesterol Acyltransferase, Lecithin,O-Acyltransferase, Phosphatidylcholine-Sterol,Phosophatidylcholine Sterol Acyltransferase,Phosphatidylcholine Sterol O Acyltransferase
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001054 Apolipoproteins A Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE. Apo-A,ApoA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
August 1985, The Journal of biological chemistry,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
February 1983, The Journal of biological chemistry,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
December 1980, The Journal of biological chemistry,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
March 1994, The Journal of biological chemistry,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
May 1990, Virology,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
October 2000, Biochemical and biophysical research communications,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
February 2009, Veterinary research communications,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
October 2011, Bioorganic & medicinal chemistry letters,
B H Chung, and G M Anatharamaiah, and C G Brouillette, and T Nishida, and J P Segrest
February 1992, Journal of lipid research,
Copied contents to your clipboard!