Relationship between spatial-frequency and orientation tuning of striate-cortex cells. 1985

M A Webster, and R L De Valois

If striate cells had the receptive-field (RF) shapes classically attributed to them, their preferred spatial frequencies would vary considerably with orientation. Other models of RF shape would predict a greater independence between orientation and spatial-frequency tuning. We have examined this by recording the responses of cat striate-cortex cells to a wide range of different spatial-frequency and orientation combinations. In almost all cells studied, peak orientation did not consistently vary with spatial frequency, but the majority of cells showed some change in peak spatial-frequency tuning with orientation. The amount of change in peak spatial frequency tended to be greater for cells that were narrowly tuned for orientation. However, cells narrowly (and also very broadly) tuned for spatial frequency tended to show considerable independence of spatial-frequency and orientation tuning, and in all but a few cells the degree of change was less than predicted by the classic RF model. Such cells were found to fire only to patterns whose local spatial spectra fell within a compact, restricted, roughly circular two-dimensional spatial-frequency region. We conclude that the two-dimensional RF shape of striate cells more closely approximates that predicted by a two-dimensional Gabor model or by a Gaussian-derivative model than it does the classic shape based on the output of geniculate cells with aligned RF's.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013028 Space Perception The awareness of the spatial properties of objects; includes physical space. Perception, Space,Perceptions, Space,Space Perceptions
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

M A Webster, and R L De Valois
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
M A Webster, and R L De Valois
January 2001, Visual neuroscience,
M A Webster, and R L De Valois
January 1985, Experimental brain research,
M A Webster, and R L De Valois
January 2016, eNeuro,
M A Webster, and R L De Valois
March 1983, The Journal of physiology,
M A Webster, and R L De Valois
October 1993, Neuroscience,
M A Webster, and R L De Valois
January 1989, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!