Pyramidal effects in dorsal neck motoneurones of the cat. 1985

B Alstermark, and M J Pinter, and S Sasaki

The effects of contralateral pyramidal stimulation have been investigated with intracellular recording from cat alpha-motoneurones that innervate the dorsal neck musculature. A short train of stimuli evoked three types of synaptic effects: predominant excitation or inhibition and mixed effects characterized chiefly by early excitation followed by inhibition. Latency measurements indicated a minimal disynaptic linkage for excitation and for inhibition. Splenius motoneurones received primarily excitation whereas biventer cervicis-complexus motoneurones received a more varied input characterized by mixed effects or inhibition. Following transection of the pyramid just rostral to the decussation (lower pyramidal lesion) pyramidal stimulation above the lesion still produced disynaptic excitation and longer latency (possibly trisynaptic) inhibition. Pyramidal stimulation just caudal to this transection evoked inhibition with a minimal disynaptic latency, as well as longer latency excitation. The incidence of longer latency excitation was found to be reduced in cats with corticospinal tract transections at the level of the second cervical spinal segment. No post-synaptic potentials were evoked by pyramidal stimulation rostral to a pyramidal transection at the level of the trapezoid body. It is suggested that disynaptic excitation evoked by pyramidal stimulation above the lower pyramidal lesion is mediated by medullary reticulospinal neurones possessing monosynaptic excitatory connexions with neck motoneurones. Longer latency excitation appears to be mediated by neurones that receive corticospinal tract input and are located in the spinal segments containing the neck motoneurones. Disynaptic inhibition is mediated by neurones likely to be situated between the second cervical spinal segment and the level of the lower pyramidal lesion. The results also suggest that the first neurone in the chain mediating longer latency inhibition is located in the brain stem. The differences in pyramidal synaptic input between splenius and biventer cervicis-complexus motoneurones are considered in relation to the roles these muscles may serve in head position control.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009334 Neck Muscles The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus). Muscle, Neck,Muscles, Neck,Neck Muscle
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Alstermark, and M J Pinter, and S Sasaki
January 1992, Experimental brain research,
B Alstermark, and M J Pinter, and S Sasaki
January 1968, Journal of neurophysiology,
B Alstermark, and M J Pinter, and S Sasaki
December 1976, Experimental brain research,
B Alstermark, and M J Pinter, and S Sasaki
February 1987, The Journal of physiology,
B Alstermark, and M J Pinter, and S Sasaki
July 1974, Brain research,
B Alstermark, and M J Pinter, and S Sasaki
November 1977, The Journal of physiology,
B Alstermark, and M J Pinter, and S Sasaki
July 1973, Canadian journal of physiology and pharmacology,
B Alstermark, and M J Pinter, and S Sasaki
January 1984, Experimental brain research,
Copied contents to your clipboard!