Synthesis and biological activity of 6-azacadeguomycin and certain 3,4,6-trisubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides. 1985

C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar

Several 3,4,6-trisubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides were prepared and tested for their biological activity. High-temperature glycosylation of 3,6-dibromoallopurinol with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of BF3 X OEt2, followed by ammonolysis, provided 6-amino-3-bromo-1-beta-D-ribofuranosylpyrazolo-[3,4-d]pyrimidin-4(5H)-on e. Similar glycosylation of either 3-bromo-4(5H)-oxopyrazolo [3,4-d]pyrimidin-6-yl methyl sulfoxide or 6-amino-3-bromopyrazolo [3,4-d]pyrimidin-4(5H)-one, and subsequent ammonolysis, also gave 7a. The structural assignment of 7a was on the basis of spectral studies, as well as its conversion to the reported guanosine analogue 1d. Application of this glycosylation procedure to 6-(methylthio)-4(5H)-oxopyrazolo[3,4-d]pyrimidine-3-carboxamide gave the corresponding N-1 glycosyl derivative. Dethiation and debenzoylation of 16a provided an alternate route to the recently reported 3-carbamoylallopurinol ribonucleoside thus confirming the structural assignment of 16a and the nucleosides derived therefrom. Oxidation of 16a and subsequent ammonolysis afforded 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-carboxamide. Alkaline treatment of 15a gave 6-azacadeguomycin. Acetylation of 15a, followed by dehydration with phosgene, provided the versatile intermediate 6-amino-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-4(5H)-oxopyrazolo [3, 4-d]pyrimidine-3-carbonitrile. Deacetylation of 19 gave 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-carbonitrile. Reaction of 19 with H2S gave 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-thiocarboxamide. All of these compounds were tested in vitro against certain viruses and tumor cells. Among these compounds, the guanosine analogues 7a and 20a showed significant activity against measles in vitro and were found to exhibit moderate antitumor activity in vitro against L1210 and P388 leukemia. 6-Azacadeguomycin and all other compounds were inactive against the viruses and tumor cells tested in vitro.

UI MeSH Term Description Entries
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D008727 Methotrexate An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. Amethopterin,Methotrexate Hydrate,Methotrexate Sodium,Methotrexate, (D)-Isomer,Methotrexate, (DL)-Isomer,Methotrexate, Dicesium Salt,Methotrexate, Disodium Salt,Methotrexate, Sodium Salt,Mexate,Dicesium Salt Methotrexate,Hydrate, Methotrexate,Sodium, Methotrexate
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003588 Cytopathogenic Effect, Viral Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses. Cytopathic Effect, Viral,Viral Cytopathogenic Effect,Cytopathic Effects, Viral,Cytopathogenic Effects, Viral,Effect, Viral Cytopathic,Effect, Viral Cytopathogenic,Effects, Viral Cytopathic,Effects, Viral Cytopathogenic,Viral Cytopathic Effect,Viral Cytopathic Effects,Viral Cytopathogenic Effects
D006151 Guanosine A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed)
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D012263 Ribonucleosides Nucleosides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed)

Related Publications

C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
October 1983, Journal of medicinal chemistry,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
January 1982, Journal of medicinal chemistry,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
April 2000, Archiv der Pharmazie,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
October 1981, Journal of medicinal chemistry,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
September 1982, Journal of medicinal chemistry,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
September 2007, Organic & biomolecular chemistry,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
January 2005, Nucleosides, nucleotides & nucleic acids,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
December 2010, Journal of enzyme inhibition and medicinal chemistry,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
August 2002, Journal of agricultural and food chemistry,
C R Petrie, and H B Cottam, and P A McKernan, and R K Robins, and G R Revankar
November 2020, European journal of medicinal chemistry,
Copied contents to your clipboard!