Dipeptides as inhibitors of the gelation of sickle hemoglobin. 1985

C T Noguchi, and K L Luskey, and V Pavone

To examine in detail a class of peptides that inhibit the polymerization of deoxyhemoglobin S, we assayed the L-amino acids and 22 dipeptides for their effect on deoxyhemoglobin S solubility. Of the amino acids, the aromatics (phenylalanine, tyrosine, and tryptophan) significantly increased deoxyhemoglobin S solubility, as did high concentration of arginine. Combinations of the hydrophobic (specifically the aromatic) amino acids with a hydrophilic amino acid, such as arginine or lysine, resulted in dipeptides which were much more soluble than the hydrophobic or aromatic amino acid alone, and also inhibited polymerization. Furthermore, samples of deoxyhemoglobin S at 26 to 27 g/dl containing some of these dipeptides such as Arg-Trp, Arg-Phe, and Lys-Trp in excess of 50 to 100 mM did not polymerize, indicating a 1.4- to 1.6-fold increase in deoxyhemoglobin S solubility. The enhancement of polymerization, i.e., decrease in deoxyhemoglobin S solubility, observed by the addition of aspartic acid, glycine, or lysine was observed or was reduced in the dipeptides containing these hydrophilic amino acids combined with hydrophobic amino acids (valine, leucine, isoleucine, or the aromatic amino acids). The effects of these dipeptides on deoxyhemoglobin S solubility were mostly linear with concentration. However, the changes in deoxyhemoglobin S solubility by addition of a dipeptide was not simply the sum of the effects observed with the individual amino acids as exemplified by the differential effect of reversing the dipeptide sequence (e.g., Arg-Phe and Phe-Arg, or Arg-Tyr and Tyr-Arg). These data provide further evidence as to the stereospecific nature of this class of noncovalent inhibitors of deoxyhemoglobin S polymerization.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D006451 Hemoglobin, Sickle An abnormal hemoglobin resulting from the substitution of valine for glutamic acid at position 6 of the beta chain of the globin moiety. The heterozygous state results in sickle cell trait, the homozygous in sickle cell anemia. Hemoglobin S,Deoxygenated Sickle Hemoglobin,Deoxyhemoglobin S,Hemoglobin SS,Hemoglobin, Deoxygenated Sickle,SS, Hemoglobin,Sickle Hemoglobin,Sickle Hemoglobin, Deoxygenated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

C T Noguchi, and K L Luskey, and V Pavone
January 1980, Hemoglobin,
C T Noguchi, and K L Luskey, and V Pavone
August 1975, Journal of molecular biology,
C T Noguchi, and K L Luskey, and V Pavone
March 1982, Biochemistry,
C T Noguchi, and K L Luskey, and V Pavone
January 1984, Hemoglobin,
C T Noguchi, and K L Luskey, and V Pavone
January 1991, Advances in enzymology and related areas of molecular biology,
C T Noguchi, and K L Luskey, and V Pavone
January 1980, Texas reports on biology and medicine,
C T Noguchi, and K L Luskey, and V Pavone
November 1987, Blood,
C T Noguchi, and K L Luskey, and V Pavone
March 1979, Journal of molecular biology,
C T Noguchi, and K L Luskey, and V Pavone
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!