Nucleotide profiles of normal human blood cells determined by high-performance liquid chromatography. 1985

D de Korte, and W A Haverkort, and A H van Gennip, and D Roos

An anion-exchange high-performance liquid chromatography method has been used to quantitate the intracellular purine and pyrimidine nucleotides in extracts of pure lymphocytes, monocytes, neutrophils, eosinophils, erythrocytes, and platelets isolated from the blood of healthy human donors. For accurate and reproducible measurements of the nucleotide profiles in different types of pure leukocytes, the cell suspensions have to be free of platelets and erythrocytes. Incubation of the purified leukocytes for 1 h at 0 degrees C did not alter the nucleotide concentrations but reduced the interdonor variation to 10%. Incubation of purified lymphocytes for 1 h at 37 degrees C caused considerable changes in the relative concentrations of the adenine, guanine, uracil, and cytosine nucleotides. During this incubation the cell viability, the cell number, and the ATP:ADP ratio decreased. Incubation of monocytes and granulocytes for 1 h at 37 degrees C caused considerable loss of cells and/or cell death. For erythrocytes and platelets reproducible nucleotide concentrations were obtained after extraction of freshly isolated cells. During storage of erythrocytes, both at 0 degrees C and at 37 degrees C, a decrease in the ATP:ADP ratio was detected. In all cell types the predominant nucleotides were purine nucleotides, especially adenosine triphosphate. The relative concentrations of the adenine, guanine, uracil, and cytosine nucleotides were very reproducible per cell type and appeared to be characteristic for each cell type. The total nucleotide content was nearly the same for all cell types except erythrocytes, when expressed per microgram of protein. The described methods for purification and storage of blood cells will be useful for comparison of blood cells from healthy donors with those of patients, for example, leukemia patients, in which deviations of the purine and pyrimidine metabolic enzymes have already been described.

UI MeSH Term Description Entries
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011685 Purine Nucleotides Purines attached to a RIBOSE and a phosphate that can polymerize to form DNA and RNA. Nucleotides, Purine
D011742 Pyrimidine Nucleotides Pyrimidines with a RIBOSE and phosphate attached that can polymerize to form DNA and RNA. Nucleotides, Pyrimidine
D001773 Blood Cells The cells found in the body fluid circulating throughout the CARDIOVASCULAR SYSTEM. Blood Corpuscles,Blood Cell,Blood Corpuscle,Cell, Blood,Cells, Blood,Corpuscle, Blood,Corpuscles, Blood
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell

Related Publications

D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
June 1973, Blood,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
February 1983, Clinical chemistry,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
October 1991, Forensic science international,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
August 1988, International journal of sports medicine,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
January 1988, Pharmacology,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
June 1984, Journal of chromatography,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
January 1993, Enzyme & protein,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
May 1991, Analytical biochemistry,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
December 1983, Journal of pharmaceutical sciences,
D de Korte, and W A Haverkort, and A H van Gennip, and D Roos
April 1984, Journal of pharmaceutical sciences,
Copied contents to your clipboard!