Interaction of Newcastle disease virus strains differing in virulence with chicken red blood cell receptors. 1985

B Rivetz, and M Lipkind

Nine NDV strains belonging to lentogenic, mesogenic and velogenic groups were studied. Virus adsorption to chicken red blood cell (RBC) surface was performed at 4 degrees C, and after a temperature shift from 4 degrees to 37 degrees C elution of pre-adsorbed virus and accumulation of free N-acetyl-neuraminic acid (NANA) split from RBC receptors as a result of neuraminidase (Nase) activity was detected. In the case of high multiplicity of adsorption the elution was very fast (complete elution within 5 minutes) for all the strains irrespective of their virulence. Although physical saturation of RBC surface with the adsorbed virus was not achieved, a certain minimal (strain-specific) amount of the pre-adsorbed virus which splits a maximally possible (for a given strain) quantity of the NANA was found (a state of "enzymatic saturation"). Below a certain low multiplicity of adsorption elution was delayed for about 20-30 minutes while the accumulation of the split NANA began immediately after the temperature shift. This phenomenon was interpreted as a result of "crawling" of the adsorbed virions upon the RBC surface followed by "browsing" of RBC receptors and liberation of NANA. Thus, the Nase activity of the attached virus ("in situ Nase activity") is a factor providing both elution and "crawling" of the virus (depending on the multiplicity of adsorption). The in situ Nase activity of all the strains used was determined quantitatively by (1) parameters of enzymatic kinetics (Vmax, Km and Km/Vmax) and (2) parameters of enzymatic efficiency related to a certain quantity of the adsorbed virus, namely, per amount of: a) "crawling" virus, b) that providing "enzymatic saturation", and c) that equal to Km. Computation of these parameters revealed inverse correlation between the in situ Nase activity and the strain virulence. Thus, these indications can be in vitro markers of the in vivo virulence.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D009522 Newcastle disease virus The most well known avian paramyxovirus in the genus AVULAVIRUS and the cause of a highly infectious pneumoencephalitis in fowl. It is also reported to cause CONJUNCTIVITIS in humans. Transmission is by droplet inhalation or ingestion of contaminated water or food. Avian Paramyxovirus 1,Paramyxovirus 1, Avian
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006386 Hemagglutination Tests Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed) Hemagglutination Test,Test, Hemagglutination,Tests, Hemagglutination
D006389 Hemagglutinins, Viral Specific hemagglutinin subtypes encoded by VIRUSES. Viral Hemagglutinin,Viral Hemagglutinins,Hemagglutinin, Viral
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Rivetz, and M Lipkind
December 2005, Journal of veterinary science,
B Rivetz, and M Lipkind
January 1975, Archives of virology,
B Rivetz, and M Lipkind
May 1969, Journal of virology,
B Rivetz, and M Lipkind
January 1987, Avian diseases,
B Rivetz, and M Lipkind
January 1974, Archiv fur die gesamte Virusforschung,
Copied contents to your clipboard!