Equilibrium and rapid kinetic studies on nocodazole-tubulin interaction. 1985

J Head, and L L Lee, and D J Field, and J C Lee

The interaction between nocodazole and calf brain tubulin in 10(-2) M sodium phosphate, 10(-4) M GTP, and 12% (v/v) dimethyl sulfoxide at pH 7.0 was studied. The number of binding sites for nocodazole was shown to be one per tubulin monomer of 50,000 as a result of equilibrium binding studies by gel filtration and spectroscopic techniques. The presence of microtubule-associated proteins did not significantly affect the binding of nocodazole to tubulin. The apparent equilibrium constant measured at 25 degrees C was (4 +/- 1) X 10(5) M-1. Temperature does not significantly affect the apparent equilibrium constant; hence, the binding of nocodazole to tubulin is apparently entropy driven. Stopped flow spectroscopy was employed to monitor the rate of nocodazole binding under pseudo first order conditions. The effects of temperature and nocodazole concentration were studied. The apparent rate constants were dependent on the concentration of nocodazole in a nonlinear manner. In conjunction with results from structural and thermodynamic studies the kinetic results were interpreted to suggest a mechanism of T + N in equilibrium with TN in equilibrium with T* N, where T and N are tubulin and nocodazole, respectively. T and T* represent two conformational states of tubulin. Furthermore, the kinetic data are consistent with the thermodynamic data only if a model of two parallel similar reactions were considered, one rapid and the other slow. The initial binding step for both the rapid and slow phases was characterized by identical binding constants; however, there was a significant difference in the rates of isomerization. Hence, nocodazole is potentially a useful probe for amplifying differences in solution properties of tubulin subspecies.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001562 Benzimidazoles Compounds with a BENZENE fused to IMIDAZOLES.
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin

Related Publications

J Head, and L L Lee, and D J Field, and J C Lee
December 1996, Archives of biochemistry and biophysics,
J Head, and L L Lee, and D J Field, and J C Lee
January 1978, Biochemistry,
J Head, and L L Lee, and D J Field, and J C Lee
November 1979, Biophysical chemistry,
J Head, and L L Lee, and D J Field, and J C Lee
March 2006, Dalton transactions (Cambridge, England : 2003),
J Head, and L L Lee, and D J Field, and J C Lee
April 1971, Biochimica et biophysica acta,
J Head, and L L Lee, and D J Field, and J C Lee
December 1981, Biochemical Society transactions,
J Head, and L L Lee, and D J Field, and J C Lee
May 1971, Biochemistry,
J Head, and L L Lee, and D J Field, and J C Lee
April 1992, The Journal of biological chemistry,
J Head, and L L Lee, and D J Field, and J C Lee
December 1980, Biochemistry,
J Head, and L L Lee, and D J Field, and J C Lee
January 2015, Biochemical and biophysical research communications,
Copied contents to your clipboard!