Antibody-independent activation of C1, the first component of complement, by cardiolipin. 1985

T Kovacsovics, and J Tschopp, and A Kress, and H Isliker

Lipid vesicles containing phospholipids known to be present in substantial amounts in mitochondrial membranes were tested for their capacity to activate C1. Among them, only cardiolipin (CL) was highly efficient in C1 activation; no such effect was observed with phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol. CL was shown to bind specifically C1q, because only unlabeled C1q competed with 125I-C1q for binding to CL. The requirement for C1q was confirmed by the finding that only fully reconstituted macromolecular C1, containing C1q, was activated by CL. The specificity of CL-induced activation of C1 was also demonstrated by introducing adriamycin, an agent known to interact with CL. Whereas adriamycin did not decrease C1 activation induced by immune complexes, it abrogated C1 activation by CL. The latter was shown to be a strong nonimmune activator of C1, because C1-INH did not inhibit CL-induced activation. When the concentration of CL in vesicles was decreased in the presence of phosphatidylcholine, C1 activation was detected only above a critical level of 35 mol% CL, compatible with a minimal density or clustering of CL molecules in the plane of the membrane. Moreover, C1 activation by CL was modulated by the addition of cholesterol. The threshold of CL required for C1 activation was lowered by the incorporation of more than 35 mol% cholesterol into the vesicles. These results show that CL incorporated into liposomes can be a potent nonimmune activator of C1. The negatively charged phosphate groups in CL are likely candidates for Clq-binding.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003171 Complement Pathway, Classical Complement activation initiated by the binding of COMPLEMENT C1 to ANTIGEN-ANTIBODY COMPLEXES at the COMPLEMENT C1Q subunit. This leads to the sequential activation of COMPLEMENT C1R and COMPLEMENT C1S subunits. Activated C1s cleaves COMPLEMENT C4 and COMPLEMENT C2 forming the membrane-bound classical C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Classical Complement Pathway,Classical Complement Activation Pathway,Complement Activation Pathway, Classical

Related Publications

T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
January 1982, Annales d'immunologie,
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
November 1978, The Biochemical journal,
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
April 1980, FEBS letters,
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
January 1988, The Biochemical journal,
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
January 1983, Springer seminars in immunopathology,
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
July 1985, Infection and immunity,
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
February 1984, Journal of immunology (Baltimore, Md. : 1950),
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
May 1982, Molecular immunology,
T Kovacsovics, and J Tschopp, and A Kress, and H Isliker
December 1982, Immunology,
Copied contents to your clipboard!