Dependence of calcium permeability of sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations. 1977

A M Katz, and D I Repke, and J Dunnett, and W Hasselbach

The ability of sarcoplasmic reticulum vesicles to retain calcium following ATP-supported calcium uptake in the presence of the calcium-precipitating anions oxalate and phosphate depends on Cao (calcium ion concentration outside the vesicles) and Cai (calcium ion concentration within the vesicles). Calcium efflux rates at any level of Cai are accelerated when Cao is increased. Higher Cao at the time that calcium uptake reactions reach steady state is associated with a spontaneous calcium release that reflects this effect of increased Cao. Increasing Cai at any level of Cao causes little or no acceleration of calcium efflux rate so that calcium permeability coefficients, estimated by dividing calcium efflux rates by Cai, the "driving force", are inversely proportional to Cai. Calcium permability coefficients thus correlate, as a first approximation, with the ratio Cai/Cao, decreasing 1000-fold as this ratio increases over a 3000-fold range (Cao = 0.1 to 3.3 muM, Cai =4 to 750 muM). Oscillations in both the calcium content of the vesicles and Cao are seen as calcium uptake reactions approach steady state, suggesting that calcium permeability undergoes time-dependent variations. Sudden reduction of Cao to levels that markedly inhibit calcium influx via the calcium pump unmasks a calcium efflux that decreases slowly over 60 to 90 s. The maximal calcium permeability observed in the present study would allow the calcium efflux rate from the sarcoplasmic reticulum at a Cai of 100 muM to be approximately 10(-10) mol/cm2/s, which is about 1 order of magnitude less than that estimated for the sarcoplasmic reticulum of activated skeletal muscle in vivo. The release of most of the stored calcium in some experiments indicates that the observed permeability changes can occur over a large portion of the surface of the sarcoplasmic reticulum.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007832 Lasalocid Cationic ionophore antibiotic obtained from Streptomyces lasaliensis that, among other effects, dissociates the calcium fluxes in muscle fibers. It is used as a coccidiostat, especially in poultry. Avatec,Lasalocid A,Ro 2-2985,X-537A,Ro 2 2985,Ro 22985,X 537A,X537A
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
October 1977, FEBS letters,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
June 1983, The Journal of biological chemistry,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
May 1976, Biochimica et biophysica acta,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
July 1980, The Journal of biological chemistry,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
December 1971, Archives of biochemistry and biophysics,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
March 1993, Journal of biochemistry,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
September 1981, Journal of biochemistry,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
October 1981, Federation proceedings,
A M Katz, and D I Repke, and J Dunnett, and W Hasselbach
January 1988, Methods in enzymology,
Copied contents to your clipboard!