Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. 1985

S M Highstein, and R Baker

Spinalized toadfish were held in a lucite chamber and perfused through the mouth with running seawater. Primary vestibular afferents and vestibular efferent axons and somas were studied with glass microelectrodes. Vestibular semicircular canal afferent and efferent axons were visually identified and penetrated with glass microelectrodes. Afferents responded to pulses of injected current with trains of action potentials, whereas efferents responded with only a single spike. This differential response to injected current served to further distinguish these two classes of nerve fibers that share the same canal nerve for part of their course. When current pulses were injected into efferent somadendritic recording sites, cells responded with trains of action potentials similar to those seen in other central nervous system neurons. Semicircular canal afferents were spontaneously active and occupied the same spectrum of regularity as vestibular afferents recorded in other species. Behavioral arousal evoked by lightly touching the fish on the snout or over the eye resembled spontaneous arousal observed in the field and consisted of eye withdrawal, fin erection, and attempted swimming. Efferent vestibular neurons were spontaneously active and increased their frequency of discharge when the fish was behaviorally aroused. Most efferents were briskly activated by behavioral arousal, but the time constant of the decay of their responses was variable ranging from 100 to 600 ms. Not only touch, but multimodal stimuli were capable of increasing the level of spontaneous activity of efferent vestibular neurons. The shortest latency to behavioral activation was 160 ms. Vestibular primary afferents also manifested increase in neuronal activity with behavioral activation. Irregularly discharging afferents were much more responsive than regularly discharging afferents. One rare case of transient inhibition in a regularly discharging afferent is illustrated. Severing the efferent vestibular nerve blocked behavioral activation in vestibular primary afferents. Electrical stimulation of the efferent vestibular nerve produced excitatory postsynaptic potentials (EPSPs) at latencies within the monosynaptic range in vestibular primary afferents. These monosynaptic EPSPs could produce action potentials in primary afferents or could sum with subthreshold depolarizations produced by current passed through the microelectrode to initiate impulses.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001143 Arousal Cortical vigilance or readiness of tone, presumed to be in response to sensory stimulation via the reticular activating system. Vigilance, Cortical,Arousals,Cortical Vigilance
D012665 Semicircular Canals Three long canals (anterior, posterior, and lateral) of the bony labyrinth. They are set at right angles to each other and are situated posterosuperior to the vestibule of the bony labyrinth (VESTIBULAR LABYRINTH). The semicircular canals have five openings into the vestibule with one shared by the anterior and the posterior canals. Within the canals are the SEMICIRCULAR DUCTS. Semi-Circular Canals,Canal, Semi-Circular,Canal, Semicircular,Semi Circular Canals,Semi-Circular Canal,Semicircular Canal
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses
D014725 Vestibular Nerve The vestibular part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The vestibular nerve fibers arise from neurons of Scarpa's ganglion and project peripherally to vestibular hair cells and centrally to the VESTIBULAR NUCLEI of the BRAIN STEM. These fibers mediate the sense of balance and head position. Scarpa's Ganglion,Ganglion, Scarpa's,Nerve, Vestibular,Nerves, Vestibular,Scarpa Ganglion,Scarpas Ganglion,Vestibular Nerves

Related Publications

S M Highstein, and R Baker
May 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S M Highstein, and R Baker
May 1999, Annals of the New York Academy of Sciences,
S M Highstein, and R Baker
July 1991, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
S M Highstein, and R Baker
June 2015, The Journal of experimental biology,
S M Highstein, and R Baker
August 2022, Journal of neurophysiology,
S M Highstein, and R Baker
September 1997, Hearing research,
Copied contents to your clipboard!