C-fibre excitation and tonic descending inhibition of dorsal horn neurones in adult rats treated at birth with capsaicin. 1985

F Cervero, and M B Plenderleith

Single unit electrical activity has been recorded from dorsal horn neurones in the lumbar cord of rats anaesthetized with sodium pentobarbitone. Three groups of animals were used: normal adult rats, adult rats that had been treated at birth with capsaicin (50 mg kg-1 s.c.) and adult rats that had been injected at birth with the drug vehicle only. Rats treated at birth with capsaicin showed a substantial reduction in the number of afferent C fibres as indicated by the virtual absence of C waves in the compound action potentials evoked in the sural nerve by antidromic stimulation of the L4-L6 dorsal roots. No significant differences were found in any of the parameters measured between the vehicle treated and the untreated animals. Therefore, rats from these two groups are referred to as control animals. All dorsal horn neurones studied were driven by electrical stimulation of the A fibres in the ipsilateral sural nerve and had cutaneous receptive fields in the ipsilateral hind limb. Two groups of neurone were distinguished: those receiving an input from A fibres only (A only) and those neurones that could also be driven by sural C fibres (A + C). In the control group, 56% of the neurones were A only and 44% were A + C. In capsaicin-treated rats these proportions were significantly different: 78% and 22% respectively. No differences were found in receptive field sizes of A-only neurones between those recorded in control rats and those from capsaicin-treated animals. However, a large and significant increase in receptive field size of A + C neurones was observed in capsaicin-treated rats compared to their counterparts in normal animals. In control rats 80% of the A + C neurones showed tonic descending inhibition of their C-fibre-evoked responses as assessed by reversible spinalization. In capsaicin-treated rats this proportion fell to 47% of the A + C neurones. The magnitude of the tonic descending inhibition was also reduced in the fewer A + C neurones of capsaicin-treated rats that were subjected to it. Only 4% of A + C neurones with tonic descending inhibition in capsaicin-treated rats were powerfully inhibited compared to 26% in control animals. The mean number of spikes evoked by C-fibre stimulation of the sural nerve in A + C neurones of control and of capsaicin-treated rats was not significantly different between these two groups of animals in the intact and in the spinalized states.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

F Cervero, and M B Plenderleith
September 1977, Journal de physiologie,
F Cervero, and M B Plenderleith
January 1998, The Journal of physiology,
F Cervero, and M B Plenderleith
January 1983, Somatosensory research,
F Cervero, and M B Plenderleith
August 1981, Neuroscience letters,
Copied contents to your clipboard!