Relationship between reversible acetylcholinesterase inhibition and efficacy against soman lethality. 1985

W J Lennox, and L W Harris, and B G Talbot, and D R Anderson

Carbamate pretreatment (45% inhibition, reversible), combined with therapy, protected rats from soman-induced lethality [The Pharmacologist 23, 224 (1981)]. The present study was done to see if less than 45% inhibition protects and to see if reversible acetylcholinesterase (AChE) inhibition and efficacy against soman lethality are correlated. At 30 min pre-soman, guinea pigs and rats received (im) either pyridostigmine (Py) or physostigmine (Ph) to inhibit whole blood AChE from 10 to 70%; at 1 min post-soman (sc), they received (im) atropine (16 mg/kg)/2-PAMCl (50 mg/kg) and mecamylamine (0.8 mg/kg)/atropine (16 mg/kg), respectively. Protective ratios (PRs) were computed and they ranged from 3.1 to 7.7 for guinea pigs and from 1.8 to 2.4 for rats. In guinea pigs the PRs for Py + therapy were roughly similar to those of Ph + therapy. In both species at 30 min after im injection of Py and Ph, a linear relationship was found between percentage of whole blood AChE inhibition and ln dosage of carbamate. Positive correlation (p less than 0.05) was found between the degree of reversible AChE inhibition by pretreatment, coupled with therapy, and efficacy against soman lethality. The present data indicate that inhibition levels as low as 10% may provide some protection.

UI MeSH Term Description Entries
D008297 Male Males
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D011220 Pralidoxime Compounds Various salts of a quaternary ammonium oxime that reconstitute inactivated acetylcholinesterase, especially at the neuromuscular junction, and may cause neuromuscular blockade. They are used as antidotes to organophosphorus poisoning as chlorides, iodides, methanesulfonates (mesylates), or other salts. 2-PAM Compounds,Pyridine Aldoxime Methyl Compounds,2 PAM Compounds,Compounds, 2-PAM,Compounds, Pralidoxime
D011729 Pyridostigmine Bromide A cholinesterase inhibitor with a slightly longer duration of action than NEOSTIGMINE. It is used in the treatment of myasthenia gravis and to reverse the actions of muscle relaxants. Mestinon,Pyridostigmine,Bromide, Pyridostigmine
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004359 Drug Therapy, Combination Therapy with two or more separate preparations given for a combined effect. Combination Chemotherapy,Polychemotherapy,Chemotherapy, Combination,Combination Drug Therapy,Drug Polytherapy,Therapy, Combination Drug,Chemotherapies, Combination,Combination Chemotherapies,Combination Drug Therapies,Drug Polytherapies,Drug Therapies, Combination,Polychemotherapies,Polytherapies, Drug,Polytherapy, Drug,Therapies, Combination Drug
D005260 Female Females

Related Publications

W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
January 1990, Drug and chemical toxicology,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
February 1986, Toxicology letters,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
January 1991, Sbornik vedeckych praci Lekarske fakulty Karlovy university v Hradci Kralove,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
February 2006, Basic & clinical pharmacology & toxicology,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
January 1991, Biochemical pharmacology,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
April 1962, The Journal of biological chemistry,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
December 2005, Chemico-biological interactions,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
September 1987, Toxicology letters,
W J Lennox, and L W Harris, and B G Talbot, and D R Anderson
January 1997, Fundamental & clinical pharmacology,
Copied contents to your clipboard!