Binding and structural diversity among high-affinity monoclonal anti-digoxin antibodies. 1985

M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies

High-affinity monoclonal antibodies specific for the cardiac glycoside digoxin provide a useful system for the study of structure-function relationships between antibody combining site and specific antigenic determinants. Fifteen high-affinity monoclonal anti-digoxin antibodies were produced when spleen cells from A/J mice immunized with digoxin coupled to human serum albumin (Dig-HSA) were fused with the non-secreting murine myeloma Sp2/0 cell line. Each subcloned hybridoma antibody was analyzed for affinity and specificity for structurally related cardiac glycosides by a radioimmunoassay based on the adsorption of free [3H]digoxin to dextran-coated charcoal. All of the anti-digoxin hybridoma proteins demonstrated high affinity constants ranging from 10(9) to 10(12) M-1. Using seven different analogs of digoxin, binding specificities of the monoclonal antibodies were assessed by inhibition radioimmunoassay. The 15 hybridomas produced from fusions involving five mice could be divided into eight sets on the basis of these binding specificities. Certain antibodies exhibit a preference for the aglycone portion of digoxin, while others are more specific for the tridigitoxose sugar moiety of digoxin. Monoclonal antibody H- and L-chains were subjected to N-terminal amino acid sequence analysis. The antibodies may be divided into several sequence homology sets for both H- and L-chains. In most instances, homologous heavy chains are associated with a set of homologous light chains. Homologous partial sequences, however, do not correlate with similar antigenic specificities and affinities for digoxin. Thus the fine specificity for antigen is not dependent on VH- and VL-encoded sequences alone. These data illustrate the broad diversity of the elicited response to a single hapten, even in inbred mice.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D004077 Digoxin A cardiotonic glycoside obtained mainly from Digitalis lanata; it consists of three sugars and the aglycone DIGOXIGENIN. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in ATRIAL FIBRILLATION and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digacin,Digitek,Digoregen,Digoxina Boehringer,Digoxine Nativelle,Dilanacin,Hemigoxine Nativelle,Lanacordin,Lanicor,Lanoxicaps,Lanoxin,Lanoxin-PG,Lenoxin,Mapluxin,Boehringer, Digoxina,Lanoxin PG,Nativelle, Digoxine,Nativelle, Hemigoxine
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000915 Antibody Affinity A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes. Affinity, Antibody,Antibody Avidity,Avidity, Antibody,Affinities, Antibody,Antibody Affinities,Antibody Avidities,Avidities, Antibody
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
September 1982, Journal of immunology (Baltimore, Md. : 1950),
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
October 1990, Hybridoma,
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
December 1990, Hybridoma,
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
August 1988, Hybridoma,
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
October 1987, Journal of immunology (Baltimore, Md. : 1950),
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
January 2002, Journal of molecular biology,
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
August 1989, Hybridoma,
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
November 1995, Biochemical pharmacology,
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
May 1995, Pharmaceutical research,
M Mudgett-Hunter, and W Anderson, and E Haber, and M N Margolies
February 1981, Scandinavian journal of clinical and laboratory investigation,
Copied contents to your clipboard!