[Behavior of late ventricular potentials in acute experimental myocardial ischemia]. 1985

H J Duck, and H Pankau, and H Köhler

Locally retarded depolarizations of the ischaemic myocardium are regarded as frequent trigger mechanisms of dangerous ventricular arrhythmias. Up to now, however, there are scarcely systematic investigations concerning their concrete developmental conditions in man, since late potentials can be made evident only by means of expensive invasive methods or signal mediation techniques. Therefore, an animal model should be built, which is suitable for the control of new therapy conceptions with antiarrhythmic drugs. The investigations were performed on 22 pigs in whom under insufflation anaesthesia altogether 10 pressure, flow and contractility parameters as well as 6 epicardial ECG signals were continuously recorded. The episodes of ischaemia were caused by LAD occlusions of different duration and intensity. Typical late potentials could be registered in 5 animals who all had survived complete interruptions of the coronary blood flow of longer than 10 min. The mean duration of the late potentials was 20 +/- 9.2 ms, their amplitudes reached from 150 to 600 microV. Also with regard to time and cycle constancy, the delay of the late Q-potential and the morphology they corresponded to the homogeneous phenomenon, known from man. They always could be derived only from electrodes outside the immediate zone of ischaemia. Neither partial occlusions nor complete interruption of the coronary blood flow in intervals shorter than 10 minutes led to the development of a late potential. The animal model used altogether appears very suitable to investigate the medicamentous influencibility of arrhythmogenic areas of the myocardium under direct control of the dynamic behaviour of ventricular late potentials.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006334 Heart Function Tests Examinations used to diagnose and treat heart conditions. Cardiac Function Tests,Cardiac Function Test,Function Test, Cardiac,Function Test, Heart,Function Tests, Cardiac,Function Tests, Heart,Heart Function Test,Test, Cardiac Function,Test, Heart Function,Tests, Cardiac Function,Tests, Heart Function
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right

Related Publications

H J Duck, and H Pankau, and H Köhler
June 1988, Herz,
H J Duck, and H Pankau, and H Köhler
June 1997, Minerva cardioangiologica,
H J Duck, and H Pankau, and H Köhler
January 2001, Klinicheskaia meditsina,
H J Duck, and H Pankau, and H Köhler
August 1991, Nihon Ika Daigaku zasshi,
H J Duck, and H Pankau, and H Köhler
December 1991, The American journal of cardiology,
H J Duck, and H Pankau, and H Köhler
July 1983, European heart journal,
H J Duck, and H Pankau, and H Köhler
March 1994, Coronary artery disease,
H J Duck, and H Pankau, and H Köhler
February 1991, Kardiologiia,
H J Duck, and H Pankau, and H Köhler
October 1994, Ugeskrift for laeger,
H J Duck, and H Pankau, and H Köhler
October 1994, Cardiologia (Rome, Italy),
Copied contents to your clipboard!